您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览48

In this work, we studied the luminescence properties of Tb(3+)-doped MgPbAl10O17 green phosphor. To understand the excitation mechanism and corresponding emission of the prepared phosphor, its structural, morphological and photoluminescence properties were investigated. In general, for green emission, Tb(3) is used as an activator and the obtained excitation and emission spectra indicated that this phosphor can be effectively excited by a wavelength of 380 nm, and exhibits bright green emission centered at 545 nm corresponding to the f → f transition of trivalent terbium ions. The chromaticity coordinates were (C(x) = 0.263, C(y) = 0.723). The impact of Tb(3+) concentration on the relative emission intensity was investigated, and the best doping concentration was found to be 2 mol

作者:V R, Panse;N S, Kokode;S J, Dhoble;A N, Yerpude

来源:Luminescence : the journal of biological and chemical luminescence 2016 年 31卷 3期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:48
作者:
V R, Panse;N S, Kokode;S J, Dhoble;A N, Yerpude
来源:
Luminescence : the journal of biological and chemical luminescence 2016 年 31卷 3期
标签:
SEM XRD aluminates phosphor photoluminescence
In this work, we studied the luminescence properties of Tb(3+)-doped MgPbAl10O17 green phosphor. To understand the excitation mechanism and corresponding emission of the prepared phosphor, its structural, morphological and photoluminescence properties were investigated. In general, for green emission, Tb(3) is used as an activator and the obtained excitation and emission spectra indicated that this phosphor can be effectively excited by a wavelength of 380 nm, and exhibits bright green emission centered at 545 nm corresponding to the f → f transition of trivalent terbium ions. The chromaticity coordinates were (C(x) = 0.263, C(y) = 0.723). The impact of Tb(3+) concentration on the relative emission intensity was investigated, and the best doping concentration was found to be 2 mol