您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览88

In this work, oligonucleotide-encapusulated silver nanoclusters were applied in the electrochemiluminescence (ECL) system of CdS nanocrystals (NCs)/ K2S2O8 based on dual ECL quenching effects. We found that the ECL emission of CdS NCs matched well with the absorption band of oligonucleotide encapsulated Ag nanoclusters, which could act as the energy acceptor of CdS NCs ECL so as to lead to an effective ECL resonance energy transfer (RET). On the other hand, the Ag nanoclusters could also catalyze electrochemical reduction of K2S2O8, resulting in increased consumption of ECL coreactant near the working electrode and decreased ECL intensity from CdS NCs. On the basis of the dual ECL quenching effects, a sensitive ECL biosensor for detection of microRNA was successfully achieved with a wide linear range from 10 fM to 100 pM.

作者:Yan-Yan, Zhang;Qiu-Mei, Feng;Jing-Juan, Xu;Hong-Yuan, Chen

来源:ACS applied materials & interfaces 2015 年 7卷 47期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:88
作者:
Yan-Yan, Zhang;Qiu-Mei, Feng;Jing-Juan, Xu;Hong-Yuan, Chen
来源:
ACS applied materials & interfaces 2015 年 7卷 47期
标签:
electrochemiluminescence microRNA detection resonance energy transfer silver nanoclusters synergistic quenching effect
In this work, oligonucleotide-encapusulated silver nanoclusters were applied in the electrochemiluminescence (ECL) system of CdS nanocrystals (NCs)/ K2S2O8 based on dual ECL quenching effects. We found that the ECL emission of CdS NCs matched well with the absorption band of oligonucleotide encapsulated Ag nanoclusters, which could act as the energy acceptor of CdS NCs ECL so as to lead to an effective ECL resonance energy transfer (RET). On the other hand, the Ag nanoclusters could also catalyze electrochemical reduction of K2S2O8, resulting in increased consumption of ECL coreactant near the working electrode and decreased ECL intensity from CdS NCs. On the basis of the dual ECL quenching effects, a sensitive ECL biosensor for detection of microRNA was successfully achieved with a wide linear range from 10 fM to 100 pM.