您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览40

Non-Communicable diseases (NCDs), including obesity, are emerging as the major health concern of the 21st century. Excess adiposity and related NCD metabolic disturbances have stimulated development of new lipid compartment measurement technologies to help us to understand cellular energy exchange, to refine phenotypes, and to develop predictive markers of adverse clinical outcomes. Recent advances now allow quantification of multiple intracellular lipid and adipose tissue compartments that can be evaluated across the human lifespan. With magnetic resonance methods leading the way, newer approaches will give molecular structural and metabolic information beyond the laboratory in real-world settings. The union between these new technologies and the growing NCD population is creating an exciting interface in advancing our understanding of chronic disease mechanisms.

作者:Steven B, Heymsfield;Houchun Harry, Hu;Wei, Shen;Owen, Carmichael

来源:Trends in endocrinology and metabolism: TEM 2015 年 26卷 12期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:40
作者:
Steven B, Heymsfield;Houchun Harry, Hu;Wei, Shen;Owen, Carmichael
来源:
Trends in endocrinology and metabolism: TEM 2015 年 26卷 12期
标签:
adiposity body composition imaging metabolism obesity
Non-Communicable diseases (NCDs), including obesity, are emerging as the major health concern of the 21st century. Excess adiposity and related NCD metabolic disturbances have stimulated development of new lipid compartment measurement technologies to help us to understand cellular energy exchange, to refine phenotypes, and to develop predictive markers of adverse clinical outcomes. Recent advances now allow quantification of multiple intracellular lipid and adipose tissue compartments that can be evaluated across the human lifespan. With magnetic resonance methods leading the way, newer approaches will give molecular structural and metabolic information beyond the laboratory in real-world settings. The union between these new technologies and the growing NCD population is creating an exciting interface in advancing our understanding of chronic disease mechanisms.