您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览47

Quantitative and qualitative characterization of fluorinated molecules represents an important task. Fluorine-based medicinal chemistry is a fast-growing research area due to the positive impact of fluorine in drug discovery, and clinical and molecular imaging (e.g., magnetic resonance imaging, positron emission tomography). Common detection methods include fluorinated-based labelling using radioactive isotopes or fluorescent dyes. Nevertheless, these molecular imaging methods can be harmful for health due to the potential instability of fluorochromes and cytoxicity of radioisotopes. Therefore, these methods often require expensive precautionary measures. In this context, we have developed, validated and patented carbon-fluorine spectroscopy (CFS™), recently renamed Spectro-Fluor™ technology, which among a non-competitive family of in-house made devices called PLIRFA™ (Pulsed Laser Isochronic Raman and Fluorescence Apparatus™), allows reliable detection of Carbon-Fluorine (C-F) bonds. C-F bonds are known to be stable and safe labels once incorporated to any type of molecules, cells, compounds or (nano-) materials. In this pioneered research study, we used Spectro-Fluor™ to assess biomarkers. As a proof-of-principle experiment, we have established a three-step protocol intended to rapid protein detection, which simply consisted of: (i) incorporating a sufficient concentration of an aromatic amino-acid (fluorinated versus non-fluorinated) into cultured cells; (ii) simultaneously isolating the fluorinated protein of interest and the non-fluorinated form of the protein (control) by immune-precipitation; (iii) comparatively analyzing the respective spectrum obtained for the two protein forms by Spectro-Fluor™. Thereby, we were able to differentiate, from colon cancer cells HCT-116, the fluorinated and non-fluorinated forms of p21, a key transcriptional factor and downstream target of p53, the so-called "guardian of the genome". Taken together, our data again demonstrates the beneficial alternative use of Spectro-Fluor™, which once combined with an innovative methodology permits one to quickly, reliably, safely and cost-effectively detect physiological or pathological proteins in cells.

作者:Farid, Menaa;Bouzid, Menaa;Olga N, Sharts

来源:Diagnostics (Basel, Switzerland) 2014 年 4卷 4期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:47
作者:
Farid, Menaa;Bouzid, Menaa;Olga N, Sharts
来源:
Diagnostics (Basel, Switzerland) 2014 年 4卷 4期
标签:
C-F bond Carbon-Fluorine spectroscopy Protein characterization Spectro-Fluor? analytical laser-based instrumentation biomarkers of disease biophotonics cancer cells in-vitro diagnostics
Quantitative and qualitative characterization of fluorinated molecules represents an important task. Fluorine-based medicinal chemistry is a fast-growing research area due to the positive impact of fluorine in drug discovery, and clinical and molecular imaging (e.g., magnetic resonance imaging, positron emission tomography). Common detection methods include fluorinated-based labelling using radioactive isotopes or fluorescent dyes. Nevertheless, these molecular imaging methods can be harmful for health due to the potential instability of fluorochromes and cytoxicity of radioisotopes. Therefore, these methods often require expensive precautionary measures. In this context, we have developed, validated and patented carbon-fluorine spectroscopy (CFS™), recently renamed Spectro-Fluor™ technology, which among a non-competitive family of in-house made devices called PLIRFA™ (Pulsed Laser Isochronic Raman and Fluorescence Apparatus™), allows reliable detection of Carbon-Fluorine (C-F) bonds. C-F bonds are known to be stable and safe labels once incorporated to any type of molecules, cells, compounds or (nano-) materials. In this pioneered research study, we used Spectro-Fluor™ to assess biomarkers. As a proof-of-principle experiment, we have established a three-step protocol intended to rapid protein detection, which simply consisted of: (i) incorporating a sufficient concentration of an aromatic amino-acid (fluorinated versus non-fluorinated) into cultured cells; (ii) simultaneously isolating the fluorinated protein of interest and the non-fluorinated form of the protein (control) by immune-precipitation; (iii) comparatively analyzing the respective spectrum obtained for the two protein forms by Spectro-Fluor™. Thereby, we were able to differentiate, from colon cancer cells HCT-116, the fluorinated and non-fluorinated forms of p21, a key transcriptional factor and downstream target of p53, the so-called "guardian of the genome". Taken together, our data again demonstrates the beneficial alternative use of Spectro-Fluor™, which once combined with an innovative methodology permits one to quickly, reliably, safely and cost-effectively detect physiological or pathological proteins in cells.