您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览50

Platinum (Pt)-based antitumor agents are effective in the treatment of many solid malignancies. However, their efficacy is limited by toxicity and drug resistance. Reduced intracellular Pt accumulation has been consistently shown to correlate with resistance in tumors. Proteins involved in copper homeostasis have been identified as Pt transporters. In particular, copper transporter receptor 1 (CTR1), the major copper influx transporter, has been shown to play a significant role in Pt resistance. Clinical studies demonstrated that expression of CTR1 correlated with intratumoral Pt concentration and outcomes following Pt-based therapy. Other CTRs such as CTR2, ATP7A and ATP7B, may also play a role in Pt resistance. Recent clinical studies attempting to modulate CTR1 to overcome Pt resistance may provide novel strategies. This review discusses the role of CTR1 as a potential predictive biomarker of Pt sensitivity and a therapeutic target for overcoming Pt resistance.

作者:Deepak, Kilari;Elizabeth, Guancial;Eric S, Kim

来源:World journal of clinical oncology 2016 年 7卷 1期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:50
作者:
Deepak, Kilari;Elizabeth, Guancial;Eric S, Kim
来源:
World journal of clinical oncology 2016 年 7卷 1期
标签:
ATP7A ATP7B Cisplatin Copper transporter Copper transporter receptor 1 Copper transporter receptor 2 Resistance
Platinum (Pt)-based antitumor agents are effective in the treatment of many solid malignancies. However, their efficacy is limited by toxicity and drug resistance. Reduced intracellular Pt accumulation has been consistently shown to correlate with resistance in tumors. Proteins involved in copper homeostasis have been identified as Pt transporters. In particular, copper transporter receptor 1 (CTR1), the major copper influx transporter, has been shown to play a significant role in Pt resistance. Clinical studies demonstrated that expression of CTR1 correlated with intratumoral Pt concentration and outcomes following Pt-based therapy. Other CTRs such as CTR2, ATP7A and ATP7B, may also play a role in Pt resistance. Recent clinical studies attempting to modulate CTR1 to overcome Pt resistance may provide novel strategies. This review discusses the role of CTR1 as a potential predictive biomarker of Pt sensitivity and a therapeutic target for overcoming Pt resistance.