您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览47

Wedged insoles are prescribed for medial knee osteoarthritis to reduce the knee adduction moment; however, it is currently not possible to predict which patients will in fact experience reduced moments. The purpose of this study was to identify a simple method using two-dimensional data for predicting the expected change in knee adduction moments with wedged insoles. Knee adduction moments during walking were determined for healthy individuals (n = 15) and individuals with medial knee osteoarthritis (n = 19) while wearing their own shoe without an insole (control), with a 6-mm medial wedge and with a 6-mm lateral wedge. The percent changes relative to control were determined. Then, participants completed single-step trials with each footwear condition where only the changes in mediolateral positions of the knee joint center, shank center of mass, ankle joint center, and foot center of mass relative to control were determined. These variables were used as predictors in regression equations where the change in knee adduction moment during walking was the dependent variable. The change in mediolateral positions of the lower extremity during a single step significantly predicted the change in knee adduction moment during walking for the lateral wedge in both the healthy (R(2) = 0.72, p = 0.008) and knee osteoarthritis (R(2) = 0.52, p = 0.026) groups, and also for the medial wedge in both the healthy (R(2) = 0.67, p = 0.016) and knee osteoarthritis (R(2) = 0.54, p = 0.020) groups. The method of using mediolateral position data from a single-step movement to predict walking biomechanics was successful. These data are relatively simple to collect and analyze, offering the possibility for future incorporation into a wedge prediction system.

作者:Ryan T, Lewinson;Darren J, Stefanyshyn

来源:Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine 2016 年 230卷 4期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:47
作者:
Ryan T, Lewinson;Darren J, Stefanyshyn
来源:
Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine 2016 年 230卷 4期
标签:
Biomechanics footwear gait knee adduction moment orthotic
Wedged insoles are prescribed for medial knee osteoarthritis to reduce the knee adduction moment; however, it is currently not possible to predict which patients will in fact experience reduced moments. The purpose of this study was to identify a simple method using two-dimensional data for predicting the expected change in knee adduction moments with wedged insoles. Knee adduction moments during walking were determined for healthy individuals (n = 15) and individuals with medial knee osteoarthritis (n = 19) while wearing their own shoe without an insole (control), with a 6-mm medial wedge and with a 6-mm lateral wedge. The percent changes relative to control were determined. Then, participants completed single-step trials with each footwear condition where only the changes in mediolateral positions of the knee joint center, shank center of mass, ankle joint center, and foot center of mass relative to control were determined. These variables were used as predictors in regression equations where the change in knee adduction moment during walking was the dependent variable. The change in mediolateral positions of the lower extremity during a single step significantly predicted the change in knee adduction moment during walking for the lateral wedge in both the healthy (R(2) = 0.72, p = 0.008) and knee osteoarthritis (R(2) = 0.52, p = 0.026) groups, and also for the medial wedge in both the healthy (R(2) = 0.67, p = 0.016) and knee osteoarthritis (R(2) = 0.54, p = 0.020) groups. The method of using mediolateral position data from a single-step movement to predict walking biomechanics was successful. These data are relatively simple to collect and analyze, offering the possibility for future incorporation into a wedge prediction system.