您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

Red phosphors AMF6:Mn(4+) (A = Na, K, Cs, Ba, Rb; M = Si, Ti, Ge) have been widely studied due to the narrow red emission bands around 630 nm. The different emission of the zero-phonon line (ZPL) may affect the color rendering index of white light-emitting diodes (WLED). The primary reason behind the emergence and intensity of ZPL, taking KNaSiF6:Mn(4+) as an example, was investigated here. The effects of pressure on crystal structure and luminescence were determined experimentally and theoretically. The increase of band gap, red shift of emission spectrum and blue shift of excitation spectrum were observed with higher applied pressure. The angles of ∠FMnF and ∠FMF(M = Si, Ti, Ge) were found clearly distorted from 180° in MF6(2-) octahedron with strong ZPL intensity. The larger distorted SiF6(2-) octahedron, the stronger ZPL intensity. This research provides a new perspective to address the ZPL intensity problem of the hexafluorosilicate phosphors caused by crystal distortion and pressure-dependence of the luminescence. The efficacy of the device featuring from Y3Al5O12:Ce(3+) (YAG) and KNaSiF6:Mn(4+) phosphor was 118 lm/W with the color temperature of 3455 K. These results reveal that KNaSiF6:Mn(4+) presents good luminescent properties and could be a potential candidate material for application in back-lighting systems.

作者:Ye, Jin;Mu-Huai, Fang;Marek, Grinberg;Sebastian, Mahlik;Tadeusz, Lesniewski;M G, Brik;Guan-Yu, Luo;Jauyn Grace, Lin;Ru-Shi, Liu

来源:ACS applied materials & interfaces 2016 年 8卷 18期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Ye, Jin;Mu-Huai, Fang;Marek, Grinberg;Sebastian, Mahlik;Tadeusz, Lesniewski;M G, Brik;Guan-Yu, Luo;Jauyn Grace, Lin;Ru-Shi, Liu
来源:
ACS applied materials & interfaces 2016 年 8卷 18期
标签:
KNaSiF6:Mn4+ ZPL high pressure red phosphor warm white LED
Red phosphors AMF6:Mn(4+) (A = Na, K, Cs, Ba, Rb; M = Si, Ti, Ge) have been widely studied due to the narrow red emission bands around 630 nm. The different emission of the zero-phonon line (ZPL) may affect the color rendering index of white light-emitting diodes (WLED). The primary reason behind the emergence and intensity of ZPL, taking KNaSiF6:Mn(4+) as an example, was investigated here. The effects of pressure on crystal structure and luminescence were determined experimentally and theoretically. The increase of band gap, red shift of emission spectrum and blue shift of excitation spectrum were observed with higher applied pressure. The angles of ∠FMnF and ∠FMF(M = Si, Ti, Ge) were found clearly distorted from 180° in MF6(2-) octahedron with strong ZPL intensity. The larger distorted SiF6(2-) octahedron, the stronger ZPL intensity. This research provides a new perspective to address the ZPL intensity problem of the hexafluorosilicate phosphors caused by crystal distortion and pressure-dependence of the luminescence. The efficacy of the device featuring from Y3Al5O12:Ce(3+) (YAG) and KNaSiF6:Mn(4+) phosphor was 118 lm/W with the color temperature of 3455 K. These results reveal that KNaSiF6:Mn(4+) presents good luminescent properties and could be a potential candidate material for application in back-lighting systems.