您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览34

Combined isometric exercise or metaboreflex activation (post-exercise muscle ischaemia (PEMI)) and cold pressor test (CPT) increase cardiac afterload, which may lead to adverse cardiovascular events. l-Citrulline supplementation (l-CIT) reduces systemic arterial stiffness (brachial-ankle pulse wave velocity (baPWV)) at rest and aortic haemodynamic responses to CPT. The aim of this study was to determine the effect of l-CIT on aortic haemodynamic and baPWV responses to PEMI+CPT. In all, sixteen healthy, overweight/obese males (age 24 (sem 6) years; BMI 29·3 (sem 4·0) kg/m2) were randomly assigned to placebo or l-CIT (6 g/d) for 14 d in a cross-over design. Brachial and aortic systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP), aortic augmented pressure (AP), augmentation index (AIx), baPWV, reflection timing (Tr) and heart rate (HR) were evaluated at rest and during isometric handgrip exercise (IHG), PEMI and PEMI+CPT at baseline and after 14 d. No significant effects were evident after l-CIT at rest. l-CIT attenuated the increases in aortic SBP and wave reflection (AP and AIx) during IHG, aortic DBP, MAP and AIx during PEMI, and aortic SBP, DBP, MAP, AP, AIx and baPWV during PEMI+CPT compared with placebo. HR and Tr were unaffected by l-CIT in all conditions. Our findings demonstrate that l-CIT attenuates aortic blood pressure and wave reflection responses to exercise-related metabolites. Moreover, l-CIT attenuates the exaggerated arterial stiffness response to combined metaboreflex activation and cold exposure, suggesting a protective effect against increased cardiac afterload during physical stress.

作者:Arturo, Figueroa;Stacey, Alvarez-Alvarado;Salvador J, Jaime;Roy, Kalfon

来源:The British journal of nutrition 2016 年 116卷 2期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:34
作者:
Arturo, Figueroa;Stacey, Alvarez-Alvarado;Salvador J, Jaime;Roy, Kalfon
来源:
The British journal of nutrition 2016 年 116卷 2期
标签:
AIx augmentation index AP augmented pressure Aortic blood pressure Arterial stiffness BP blood pressure CPT cold pressor test Cold pressor test DBP diastolic blood pressure IHG isometric handgrip exercise Isometric exercise MAP mean arterial pressure Metaboreflex activation NO nitric oxide PEMI post-exercise muscle ischaemia PWV pulse wave velocity SBP systolic blood pressure Tr transit time of the reflected wave Wave reflection baPWV brachial-ankle pulse wave velocity l-CIT l-citrulline supplementation l-Citrulline supplementation
Combined isometric exercise or metaboreflex activation (post-exercise muscle ischaemia (PEMI)) and cold pressor test (CPT) increase cardiac afterload, which may lead to adverse cardiovascular events. l-Citrulline supplementation (l-CIT) reduces systemic arterial stiffness (brachial-ankle pulse wave velocity (baPWV)) at rest and aortic haemodynamic responses to CPT. The aim of this study was to determine the effect of l-CIT on aortic haemodynamic and baPWV responses to PEMI+CPT. In all, sixteen healthy, overweight/obese males (age 24 (sem 6) years; BMI 29·3 (sem 4·0) kg/m2) were randomly assigned to placebo or l-CIT (6 g/d) for 14 d in a cross-over design. Brachial and aortic systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP), aortic augmented pressure (AP), augmentation index (AIx), baPWV, reflection timing (Tr) and heart rate (HR) were evaluated at rest and during isometric handgrip exercise (IHG), PEMI and PEMI+CPT at baseline and after 14 d. No significant effects were evident after l-CIT at rest. l-CIT attenuated the increases in aortic SBP and wave reflection (AP and AIx) during IHG, aortic DBP, MAP and AIx during PEMI, and aortic SBP, DBP, MAP, AP, AIx and baPWV during PEMI+CPT compared with placebo. HR and Tr were unaffected by l-CIT in all conditions. Our findings demonstrate that l-CIT attenuates aortic blood pressure and wave reflection responses to exercise-related metabolites. Moreover, l-CIT attenuates the exaggerated arterial stiffness response to combined metaboreflex activation and cold exposure, suggesting a protective effect against increased cardiac afterload during physical stress.