您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览21

Poor sleep quality negatively affects memory performance, and working memory in particular. We investigated sleep habits related to sleep quality including sleep duration, daytime nap duration, nap frequency, and dream content recall frequency (DCRF). Declarative working memory can be subdivided into verbal working memory (VWM) and visuospatial working memory (VSWM). We hypothesized that sleep habits would have different effects on VWM and VSWM. To our knowledge, our study is the first to investigate differences between VWM and VSWM related to daytime nap duration, nap frequency, and DCRF. Furthermore, we tested the hypothesis that the effects of duration and frequency of daytime naps and DCRF on VWM and VSWM differed according to sex. We assessed 779 healthy right-handed individuals (434 males and 345 females; mean age: 20.7 ± 1.8 years) using a digit span forward and backward VWM task, a forward and backward VSWM task, and sleep habits scales. A correlation analysis was used to test the relationships between VWM capacity (VWMC) and VSWM capacity (VSWMC) scores and sleep duration, nap duration, nap frequency, and DCRF. Furthermore, multiple regression analyses were conducted to identify factors associated with VWMC and VSWMC scores and to identify sex-related differences. We found significant positive correlations between VSWMC and nap duration and DCRF, and between VWMC and sleep duration in all subjects. Furthermore, we found that working memory capacity (WMC) was positively correlated with nap duration in males and with sleep duration in females, and DCRF was positively correlated with VSWMC in females. Our finding of sex-related differences in the effects of sleep habits on WMC has not been reported previously. The associations between WMC and sleep habits differed according to sex because of differences in the underlying neural correlates of VWM and VSWM, and effectiveness of the sleep habits in males and females.

作者:Seishu, Nakagawa;Hikaru, Takeuchi;Yasuyuki, Taki;Rui, Nouchi;Atsushi, Sekiguchi;Yuka, Kotozaki;Carlos M, Miyauchi;Kunio, Iizuka;Ryoichi, Yokoyama;Takamitsu, Shinada;Yuki, Yamamoto;Sugiko, Hanawa;Tsuyoshi, Araki;Keiko, Kunitoki;Yuko, Sassa;Ryuta, Kawashima

来源:Frontiers in psychology 2016 年 7卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:21
作者:
Seishu, Nakagawa;Hikaru, Takeuchi;Yasuyuki, Taki;Rui, Nouchi;Atsushi, Sekiguchi;Yuka, Kotozaki;Carlos M, Miyauchi;Kunio, Iizuka;Ryoichi, Yokoyama;Takamitsu, Shinada;Yuki, Yamamoto;Sugiko, Hanawa;Tsuyoshi, Araki;Keiko, Kunitoki;Yuko, Sassa;Ryuta, Kawashima
来源:
Frontiers in psychology 2016 年 7卷
标签:
dream content remembering frequency (DCRF) nap duration sleep duration verbal working memory capacity (VWMC) visuospatial working memory capacity (VSWMC)
Poor sleep quality negatively affects memory performance, and working memory in particular. We investigated sleep habits related to sleep quality including sleep duration, daytime nap duration, nap frequency, and dream content recall frequency (DCRF). Declarative working memory can be subdivided into verbal working memory (VWM) and visuospatial working memory (VSWM). We hypothesized that sleep habits would have different effects on VWM and VSWM. To our knowledge, our study is the first to investigate differences between VWM and VSWM related to daytime nap duration, nap frequency, and DCRF. Furthermore, we tested the hypothesis that the effects of duration and frequency of daytime naps and DCRF on VWM and VSWM differed according to sex. We assessed 779 healthy right-handed individuals (434 males and 345 females; mean age: 20.7 ± 1.8 years) using a digit span forward and backward VWM task, a forward and backward VSWM task, and sleep habits scales. A correlation analysis was used to test the relationships between VWM capacity (VWMC) and VSWM capacity (VSWMC) scores and sleep duration, nap duration, nap frequency, and DCRF. Furthermore, multiple regression analyses were conducted to identify factors associated with VWMC and VSWMC scores and to identify sex-related differences. We found significant positive correlations between VSWMC and nap duration and DCRF, and between VWMC and sleep duration in all subjects. Furthermore, we found that working memory capacity (WMC) was positively correlated with nap duration in males and with sleep duration in females, and DCRF was positively correlated with VSWMC in females. Our finding of sex-related differences in the effects of sleep habits on WMC has not been reported previously. The associations between WMC and sleep habits differed according to sex because of differences in the underlying neural correlates of VWM and VSWM, and effectiveness of the sleep habits in males and females.