您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览40

The noninvasive assessment of altered myocardium in patients with genetic mutations that are associated with hypertrophic cardiomyopathy (HCM) remains challenging. In this pilot study, we evaluated whether a novel echocardiography-based assessment of myocardial microstructure, the signal intensity coefficient (SIC), could detect tissue-level alterations in HCM sarcomere mutation carriers with and without left ventricular hypertrophy.We studied 3 groups of genotyped individuals: sarcomere mutation carriers with left ventricular hypertrophy (clinical HCM; n=36), mutation carriers with normal left ventricular wall thickness (subclinical HCM; n=28), and healthy controls (n=10). We compared measurements of echocardiographic SIC with validated assessments of cardiac microstructural alteration, including cardiac magnetic resonance measures of interstitial fibrosis (extracellular volume fraction), as well as serum biomarkers (NTproBNP, hs-cTnI, and PICP). In age-, sex-, and familial relation-adjusted analyses, the SIC was quantitatively different across subjects with overt HCM, subclinical HCM, and healthy controls (P<0.001). Compared with controls, the SIC was 61

作者:Pranoti, Hiremath;Patrick R, Lawler;Jennifer E, Ho;Andrew W, Correia;Siddique A, Abbasi;Raymond Y, Kwong;Michael, Jerosch-Herold;Carolyn Y, Ho;Susan, Cheng

来源:Circulation. Heart failure 2016 年 9卷 9期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:40
作者:
Pranoti, Hiremath;Patrick R, Lawler;Jennifer E, Ho;Andrew W, Correia;Siddique A, Abbasi;Raymond Y, Kwong;Michael, Jerosch-Herold;Carolyn Y, Ho;Susan, Cheng
来源:
Circulation. Heart failure 2016 年 9卷 9期
标签:
echocardiography hypertrophic cardiomyopathy left ventricular hypertrophy myocardium sacromeres
The noninvasive assessment of altered myocardium in patients with genetic mutations that are associated with hypertrophic cardiomyopathy (HCM) remains challenging. In this pilot study, we evaluated whether a novel echocardiography-based assessment of myocardial microstructure, the signal intensity coefficient (SIC), could detect tissue-level alterations in HCM sarcomere mutation carriers with and without left ventricular hypertrophy.We studied 3 groups of genotyped individuals: sarcomere mutation carriers with left ventricular hypertrophy (clinical HCM; n=36), mutation carriers with normal left ventricular wall thickness (subclinical HCM; n=28), and healthy controls (n=10). We compared measurements of echocardiographic SIC with validated assessments of cardiac microstructural alteration, including cardiac magnetic resonance measures of interstitial fibrosis (extracellular volume fraction), as well as serum biomarkers (NTproBNP, hs-cTnI, and PICP). In age-, sex-, and familial relation-adjusted analyses, the SIC was quantitatively different across subjects with overt HCM, subclinical HCM, and healthy controls (P<0.001). Compared with controls, the SIC was 61