您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览46

This study introduces a new methodology to synthesize magnetic biochar/Fe3O4 nanocomposites (M-BC) from marine macroalgae using a facile electro-magnetization technique. M-BC was prepared by stainless steel electrode-based electrochemical system, followed by pyrolysis. Physical and chemical analyses revealed that the porosity and magnetic properties were simultaneously improved via the electro-magnetization process, which enabled not only higher adsorption performance, but also easier separation/recovery from aqueous media at post-adsorption stage using a bar magnet. The adsorption equilibrium studies reveal that the Sips model satisfactorily predicts the adsorption capacity, which found to be 190, 297, and 382mgg(-1) at 10, 20, and 30°C, respectively. The overall findings indicate that one-step electro-magnetization technique can be effectively utilized for the fabrication of biochar with concurrent acquisition of porosity and magnetism, which can bring about new directions in the practical use of adsorption process in environment remediation and mitigate crises originating from it.

作者:Kyung-Won, Jung;Brian Hyun, Choi;Tae-Un, Jeong;Kyu-Hong, Ahn

来源:Bioresource technology 2016 年 220卷

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:46
作者:
Kyung-Won, Jung;Brian Hyun, Choi;Tae-Un, Jeong;Kyu-Hong, Ahn
来源:
Bioresource technology 2016 年 220卷
标签:
Acid orange 7 Adsorption Electrochemical Magnetic biochar Magnetite
This study introduces a new methodology to synthesize magnetic biochar/Fe3O4 nanocomposites (M-BC) from marine macroalgae using a facile electro-magnetization technique. M-BC was prepared by stainless steel electrode-based electrochemical system, followed by pyrolysis. Physical and chemical analyses revealed that the porosity and magnetic properties were simultaneously improved via the electro-magnetization process, which enabled not only higher adsorption performance, but also easier separation/recovery from aqueous media at post-adsorption stage using a bar magnet. The adsorption equilibrium studies reveal that the Sips model satisfactorily predicts the adsorption capacity, which found to be 190, 297, and 382mgg(-1) at 10, 20, and 30°C, respectively. The overall findings indicate that one-step electro-magnetization technique can be effectively utilized for the fabrication of biochar with concurrent acquisition of porosity and magnetism, which can bring about new directions in the practical use of adsorption process in environment remediation and mitigate crises originating from it.