您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览19

This investigation explored the mechanism for microparticles (MPs) production by human and murine platelets exposed to high pressures of inert gases. Results demonstrate that MPs production occurs via an oxidative stress response in a dose-dependent manner and follows the potency series N2>Ar>He. Gases with higher van der Waals volumes or polarizability such as SF6 and N2O, or hydrostatic pressure, do not cause MPs production. Singlet O2 is generated by N2, Ar and He, which is linked to NADPH oxidase (NOX) activity. Progression of oxidative stress involves activation of nitric oxide synthase (NOS) leading to S-nitrosylation of cytosolic actin. Exposure to gases enhances actin filament turnover and associations between short actin filaments, NOS, vasodilator-stimulated phosphoprotein (VASP), focal adhesion kinase (FAK) and Rac1. Inhibition of NOS or NOX by chemical inhibitors or using platelets from mice lacking NOS2 or the gp91phox component of NOX diminish generation of reactive species, enhanced actin polymerization and MP generation by high pressure gases. We conclude that by initiating a sequence of progressive oxidative stress responses high pressure gases cause platelets to generate MPs.

作者:Jasjeet, Bhullar;Veena M, Bhopale;Ming, Yang;Kinjal, Sethuraman;Stephen R, Thom

来源:Free radical biology & medicine 2016 年 101卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:19
作者:
Jasjeet, Bhullar;Veena M, Bhopale;Ming, Yang;Kinjal, Sethuraman;Stephen R, Thom
来源:
Free radical biology & medicine 2016 年 101卷
标签:
Filamentous actin Focal adhesion kinase NADPH oxidase Reactive nitrogen species S-nitrosylation Singlet oxygen
This investigation explored the mechanism for microparticles (MPs) production by human and murine platelets exposed to high pressures of inert gases. Results demonstrate that MPs production occurs via an oxidative stress response in a dose-dependent manner and follows the potency series N2>Ar>He. Gases with higher van der Waals volumes or polarizability such as SF6 and N2O, or hydrostatic pressure, do not cause MPs production. Singlet O2 is generated by N2, Ar and He, which is linked to NADPH oxidase (NOX) activity. Progression of oxidative stress involves activation of nitric oxide synthase (NOS) leading to S-nitrosylation of cytosolic actin. Exposure to gases enhances actin filament turnover and associations between short actin filaments, NOS, vasodilator-stimulated phosphoprotein (VASP), focal adhesion kinase (FAK) and Rac1. Inhibition of NOS or NOX by chemical inhibitors or using platelets from mice lacking NOS2 or the gp91phox component of NOX diminish generation of reactive species, enhanced actin polymerization and MP generation by high pressure gases. We conclude that by initiating a sequence of progressive oxidative stress responses high pressure gases cause platelets to generate MPs.