您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

Antiangiogenesis therapy has been served as a potent cancer treatment strategy for decades, yet disrupting neovasculature would provoke tumor cells into invasive growth and result in distal metastasis. The basic cause of cancer metastasis can be traced down to the presence of circulating tumor cells (CTCs) which detach from primary tumor site and act as 'seeds'. Epithelial cell adhesion molecule (EpCAM) is a potential biomarker for selective capture of epithelium-derived CTCs. Here, we integrated tumor neovessles-targetable ligands K237 peptide with Ep23 aptamer against EpCAM into a single drug-loaded nanoplatform using paclitaxel (PTX) as the model drug, aiming at damaging the primary tumor and neutralizing CTCs simultaneously to achieve a synergistic anti-tumor therapeutic effect. Enhanced cellular uptake, cell apoptosis-induction and cell-viability inhibition efficiency of the peptide and aptamer dual-functionalized nanoparticles (dTNP) were observed in both human umbilical vein endothelial cells (HUVEC) and 4T1 cells in vitro. Using cone-and-plate viscometer to create venous flow velocity, dTNP was also found to be able to capture CTCs under shear stress. The CTC-targeting and neutralization effect of dTNP in bloodstream and 4T1-GFP cell-derived lung metastasis mice model was confirmed via in vivo flow cytometry (IVFC), intravital imaging and confocal microscopy analysis. As a result, the orthotropic breast tumor-bearing mice administrated with PTX-loaded dTNP exhibited the optimal therapeutic effect. Taken together, the findings here provided direct evidence that the tumor neovasculature and CTCs dual-targeting drug delivery system could provide a novel modality for the treatment of highly-invasive breast cancer.

作者:Jianhui, Yao;Jingxian, Feng;Xiaoling, Gao;Dan, Wei;Ting, Kang;Qianqian, Zhu;Tianze, Jiang;Xunbin, Wei;Jun, Chen

来源:Biomaterials 2017 年 113卷

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Jianhui, Yao;Jingxian, Feng;Xiaoling, Gao;Dan, Wei;Ting, Kang;Qianqian, Zhu;Tianze, Jiang;Xunbin, Wei;Jun, Chen
来源:
Biomaterials 2017 年 113卷
标签:
Circulating tumor cells Combination therapy Dual-targeting nanoparticles Neovasculature
Antiangiogenesis therapy has been served as a potent cancer treatment strategy for decades, yet disrupting neovasculature would provoke tumor cells into invasive growth and result in distal metastasis. The basic cause of cancer metastasis can be traced down to the presence of circulating tumor cells (CTCs) which detach from primary tumor site and act as 'seeds'. Epithelial cell adhesion molecule (EpCAM) is a potential biomarker for selective capture of epithelium-derived CTCs. Here, we integrated tumor neovessles-targetable ligands K237 peptide with Ep23 aptamer against EpCAM into a single drug-loaded nanoplatform using paclitaxel (PTX) as the model drug, aiming at damaging the primary tumor and neutralizing CTCs simultaneously to achieve a synergistic anti-tumor therapeutic effect. Enhanced cellular uptake, cell apoptosis-induction and cell-viability inhibition efficiency of the peptide and aptamer dual-functionalized nanoparticles (dTNP) were observed in both human umbilical vein endothelial cells (HUVEC) and 4T1 cells in vitro. Using cone-and-plate viscometer to create venous flow velocity, dTNP was also found to be able to capture CTCs under shear stress. The CTC-targeting and neutralization effect of dTNP in bloodstream and 4T1-GFP cell-derived lung metastasis mice model was confirmed via in vivo flow cytometry (IVFC), intravital imaging and confocal microscopy analysis. As a result, the orthotropic breast tumor-bearing mice administrated with PTX-loaded dTNP exhibited the optimal therapeutic effect. Taken together, the findings here provided direct evidence that the tumor neovasculature and CTCs dual-targeting drug delivery system could provide a novel modality for the treatment of highly-invasive breast cancer.