您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览29

Acute lymphoblastic leukemia (ALL) is a blood cancer that is characterized by the overproduction of lymphoblasts in the bone marrow. Treatment for pediatric ALL typically uses combination chemotherapy in phases, including a prolonged maintenance phase with oral methotrexate and 6-mercaptopurine, which often requires dose adjustment to balance side effects and efficacy. However, a major challenge confronting combination therapy for virtually every disease indication is the inability to pinpoint drug doses that are optimized for each patient, and the ability to adaptively and continuously optimize these doses to address comorbidities and other patient-specific physiological changes. To address this challenge, we developed a powerful digital health technology platform based on phenotypic personalized medicine (PPM). PPM identifies patient-specific maps that parabolically correlate drug inputs with phenotypic outputs. In a disease mechanism-independent fashion, we individualized drug ratios/dosages for two pediatric patients with standard-risk ALL in this study via PPM-mediated retrospective optimization. PPM optimization demonstrated that dynamically adjusted dosing of combination chemotherapy could enhance treatment outcomes while also substantially reducing the amount of chemotherapy administered. This may lead to more effective maintenance therapy, with the potential for shortening duration and reducing the risk of serious side effects.

作者:Dong-Keun, Lee;Vivian Y, Chang;Theodore, Kee;Chih-Ming, Ho;Dean, Ho

来源:Journal of laboratory automation 2016 年

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:29
作者:
Dong-Keun, Lee;Vivian Y, Chang;Theodore, Kee;Chih-Ming, Ho;Dean, Ho
来源:
Journal of laboratory automation 2016 年
标签:
combination therapy digital health drug cocktails drug development oncology personalized medicine precision medicine
Acute lymphoblastic leukemia (ALL) is a blood cancer that is characterized by the overproduction of lymphoblasts in the bone marrow. Treatment for pediatric ALL typically uses combination chemotherapy in phases, including a prolonged maintenance phase with oral methotrexate and 6-mercaptopurine, which often requires dose adjustment to balance side effects and efficacy. However, a major challenge confronting combination therapy for virtually every disease indication is the inability to pinpoint drug doses that are optimized for each patient, and the ability to adaptively and continuously optimize these doses to address comorbidities and other patient-specific physiological changes. To address this challenge, we developed a powerful digital health technology platform based on phenotypic personalized medicine (PPM). PPM identifies patient-specific maps that parabolically correlate drug inputs with phenotypic outputs. In a disease mechanism-independent fashion, we individualized drug ratios/dosages for two pediatric patients with standard-risk ALL in this study via PPM-mediated retrospective optimization. PPM optimization demonstrated that dynamically adjusted dosing of combination chemotherapy could enhance treatment outcomes while also substantially reducing the amount of chemotherapy administered. This may lead to more effective maintenance therapy, with the potential for shortening duration and reducing the risk of serious side effects.