您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览59

Conventional methods used for the in vivo analysis of subcellular protein localizations and their spatio-temporal dynamics in prokaryotes are based on either the engineering of N(amino)- or C(carboxy)-terminal fusions of fluorescent proteins with the protein of interest, or involved probing internal sites for tag integration. In addition, the use of inducible or constitutive promoters for the expression of fluorescent fusion proteins can lead to overexpression and result in localization artifacts. Here, we describe a method for the synthesis of fluorescent fusion proteins using transposable elements, which can randomly integrate in the internal sections of the protein coding sequence to produce full-length fluorescent fusion proteins expressed at endogenous levels. The established method was used for investigating subcellular localization of proteins in the soil bacterium and plant symbiont Sinorhizobium meliloti. Two constructs for transposition-based insertion of the enhanced green fluorescent protein (eGFP), as well as for in vivo excision of the selection marker for the production of full-length proteins were engineered. Conjugation with pHB14 plasmid and induction of the transposition in S. meliloti produced approx. 3.22×104 transconjugant colonies harboring the fluorescent marker with the transposition efficiency of 0.8

作者:Hanna, Bednarz;Karsten, Niehaus

来源:Journal of biotechnology 2017 年 257卷

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:59
作者:
Hanna, Bednarz;Karsten, Niehaus
来源:
Journal of biotechnology 2017 年 257卷
标签:
Bacterial protein patterns Fluorescence microscopy Subcellular protein localization Transposition
Conventional methods used for the in vivo analysis of subcellular protein localizations and their spatio-temporal dynamics in prokaryotes are based on either the engineering of N(amino)- or C(carboxy)-terminal fusions of fluorescent proteins with the protein of interest, or involved probing internal sites for tag integration. In addition, the use of inducible or constitutive promoters for the expression of fluorescent fusion proteins can lead to overexpression and result in localization artifacts. Here, we describe a method for the synthesis of fluorescent fusion proteins using transposable elements, which can randomly integrate in the internal sections of the protein coding sequence to produce full-length fluorescent fusion proteins expressed at endogenous levels. The established method was used for investigating subcellular localization of proteins in the soil bacterium and plant symbiont Sinorhizobium meliloti. Two constructs for transposition-based insertion of the enhanced green fluorescent protein (eGFP), as well as for in vivo excision of the selection marker for the production of full-length proteins were engineered. Conjugation with pHB14 plasmid and induction of the transposition in S. meliloti produced approx. 3.22×104 transconjugant colonies harboring the fluorescent marker with the transposition efficiency of 0.8