您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览5

Experiments were conducted to study the effects of static magnetic fields (SMFs) on the venation network of soybean leaves using the synchrotron-based X-ray micro-imaging technique. The seeds of soybean (Glycine max, variety JS-335) were pretreated with different SMFs from 50 to 300 mT in steps of 50 mT for 1 h. The phase-contrast images obtained showed that, as the strength of the SMF increased, the area, width of the midrib, area of the midrib and minor vein of the middle leaflets of third trifoliate leaves also increased up to the SMF strength of 200 mT (1 h) and decreased thereafter. Quantification of the major conducting vein also showed the differences in the major and minor vein structures of the soybean leaves as compared with control leaves. Further, the phase-retrieval technique has been applied to make the segmentation process easy and to quantify the major and minor veins in the venation network. The width and area of midrib enhancement by pre-treatment with SMF implies an enhancement in the uptake of water, which in turn causes an increased rate of photosynthesis and stomatal conductance.

作者:A, Fatima;S, Kataria;L, Baghel;K N, Guruprasad;A K, Agrawal;B, Singh;P S, Sarkar;T, Shripathi;Y, Kashyap

来源:Journal of synchrotron radiation 2017 年 24卷 Pt 1期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:5
作者:
A, Fatima;S, Kataria;L, Baghel;K N, Guruprasad;A K, Agrawal;B, Singh;P S, Sarkar;T, Shripathi;Y, Kashyap
来源:
Journal of synchrotron radiation 2017 年 24卷 Pt 1期
标签:
micro-imaging phase retrieval phase-contrast imaging soybean
Experiments were conducted to study the effects of static magnetic fields (SMFs) on the venation network of soybean leaves using the synchrotron-based X-ray micro-imaging technique. The seeds of soybean (Glycine max, variety JS-335) were pretreated with different SMFs from 50 to 300 mT in steps of 50 mT for 1 h. The phase-contrast images obtained showed that, as the strength of the SMF increased, the area, width of the midrib, area of the midrib and minor vein of the middle leaflets of third trifoliate leaves also increased up to the SMF strength of 200 mT (1 h) and decreased thereafter. Quantification of the major conducting vein also showed the differences in the major and minor vein structures of the soybean leaves as compared with control leaves. Further, the phase-retrieval technique has been applied to make the segmentation process easy and to quantify the major and minor veins in the venation network. The width and area of midrib enhancement by pre-treatment with SMF implies an enhancement in the uptake of water, which in turn causes an increased rate of photosynthesis and stomatal conductance.