您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览26

Here, we demonstrate that the self-assembly of poly(3-hexylthiophene) (P3HT) at the air-water interface can lead to free-standing films of densely packed P3HT nanowires. Interfacial self-assembly on various liquid subphases, such as water, diethylene glycol, and glycerol, indicates that the viscosity of the subphase is an important factor for the formation of well-ordered nanostructures. The thin-film morphology is also sensitive to the concentration of P3HT, its molecular weight (MW), and the presence of oxidative defects. The densely packed nanowire films can be easily transferred to solid substrates for device applications. The ultrathin films of P3HT prepared by the interfacial assembly showed significantly higher hole mobility (∼3.6 × 10-2 cm2/V s) in a field-effect transistor than comparably thin spin-cast films. This work demonstrates that the air-liquid interfacial assembly is not limited to amphiphilic polymers and can, under optimized conditions, be applied to fabricate ultrathin films of widely used conjugated polymers with controlled morphologies.

作者:Saejin, Oh;Myungjae, Yang;Jean, Bouffard;Seunghun, Hong;So-Jung, Park

来源:ACS applied materials & interfaces 2017 年 9卷 14期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:26
作者:
Saejin, Oh;Myungjae, Yang;Jean, Bouffard;Seunghun, Hong;So-Jung, Park
来源:
ACS applied materials & interfaces 2017 年 9卷 14期
标签:
Conjugated polymer air?liquid interface field-effect transistor nanowire self-assembly
Here, we demonstrate that the self-assembly of poly(3-hexylthiophene) (P3HT) at the air-water interface can lead to free-standing films of densely packed P3HT nanowires. Interfacial self-assembly on various liquid subphases, such as water, diethylene glycol, and glycerol, indicates that the viscosity of the subphase is an important factor for the formation of well-ordered nanostructures. The thin-film morphology is also sensitive to the concentration of P3HT, its molecular weight (MW), and the presence of oxidative defects. The densely packed nanowire films can be easily transferred to solid substrates for device applications. The ultrathin films of P3HT prepared by the interfacial assembly showed significantly higher hole mobility (∼3.6 × 10-2 cm2/V s) in a field-effect transistor than comparably thin spin-cast films. This work demonstrates that the air-liquid interfacial assembly is not limited to amphiphilic polymers and can, under optimized conditions, be applied to fabricate ultrathin films of widely used conjugated polymers with controlled morphologies.