您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览19

To determine the presence of metallic microfragments and their elemental composition in the dentinal walls of root canals following preparation using different endodontic instruments and to assess the active cutting edges of instruments with regard to structural defects.A total of 108 molar teeth were selected and prepared using different endodontic instruments. Teeth were randomly divided into nine groups of 12 teeth each, according to the instruments employed: Manual systems -K-FlexoFile, K-File, and Hedstroem; rotary systems - ProTaper Next, Mtwo, BioRaCe; and reciprocating systems - Reciproc, Unicone, and WaveOne. Both root canals and instruments were assessed using scanning electron microscopy, and the elemental composition of metallic microfragments was determined using energy-dispersive X-ray spectroscopy.Metallic microfragments were found in the groups prepared with both manual and reciprocating instruments, with no statistically significant differences between groups, thirds, or presence of metallic microfragments (p ≥ 0.05). Moreover, all groups presented structural defects in both new and used instruments; however, rotary instruments (ProTaper Next, Mtwo 702, BioRaCe) were the ones with the lowest number of defects, at statistically significant differences in comparison with other instruments (p < 0.05).The presence of metallic microfragments on dentinal walls following root canal preparation was associated with manual and reciprocating instrumentation. Furthermore, rotary instruments were the ones with the lowest number of defects. Considering the outcomes measured in this study, rotary instruments performed better than the other two groups, as they were associated with the lowest number of metallic microfragments and structural defects.During root canal preparation, operative procedures may induce changes to the root canal shape, as well as the release of metallic fragments resulting from the action of instruments on dentinal walls. Therefore, it is important to determine, among the different techniques used for this purpose, which ones are least susceptible to this occurrence.

作者:Caroline, Solda;Marina C, Langaro;Alessandra N, Machado;José R, Vanni;Daniel, de A Decurcio;Julio A, Silva;Carlos, Estrela;Fernando B, Barletta

来源:The journal of contemporary dental practice 2017 年 18卷 4期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:19
作者:
Caroline, Solda;Marina C, Langaro;Alessandra N, Machado;José R, Vanni;Daniel, de A Decurcio;Julio A, Silva;Carlos, Estrela;Fernando B, Barletta
来源:
The journal of contemporary dental practice 2017 年 18卷 4期
标签:
Endodontic instruments Instrument defects Laboratory research Reciprocating instruments.
To determine the presence of metallic microfragments and their elemental composition in the dentinal walls of root canals following preparation using different endodontic instruments and to assess the active cutting edges of instruments with regard to structural defects.A total of 108 molar teeth were selected and prepared using different endodontic instruments. Teeth were randomly divided into nine groups of 12 teeth each, according to the instruments employed: Manual systems -K-FlexoFile, K-File, and Hedstroem; rotary systems - ProTaper Next, Mtwo, BioRaCe; and reciprocating systems - Reciproc, Unicone, and WaveOne. Both root canals and instruments were assessed using scanning electron microscopy, and the elemental composition of metallic microfragments was determined using energy-dispersive X-ray spectroscopy.Metallic microfragments were found in the groups prepared with both manual and reciprocating instruments, with no statistically significant differences between groups, thirds, or presence of metallic microfragments (p ≥ 0.05). Moreover, all groups presented structural defects in both new and used instruments; however, rotary instruments (ProTaper Next, Mtwo 702, BioRaCe) were the ones with the lowest number of defects, at statistically significant differences in comparison with other instruments (p < 0.05).The presence of metallic microfragments on dentinal walls following root canal preparation was associated with manual and reciprocating instrumentation. Furthermore, rotary instruments were the ones with the lowest number of defects. Considering the outcomes measured in this study, rotary instruments performed better than the other two groups, as they were associated with the lowest number of metallic microfragments and structural defects.During root canal preparation, operative procedures may induce changes to the root canal shape, as well as the release of metallic fragments resulting from the action of instruments on dentinal walls. Therefore, it is important to determine, among the different techniques used for this purpose, which ones are least susceptible to this occurrence.