您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览33

The localized in situ formation of tin dioxide (SnO2 ) nanoparticles embedded in poly(methyl methacrylate) (PMMA) films is presented. This is achieved by the photoinduced conversion of the tin acetate precursor included in polymeric films, through controlled UV or visible pulsed laser irradiation at λ=355 and 532 nm, respectively. The evolution of the formation of nanoparticles is followed by UV/Vis spectroscopy and shows that their growth is affected in different ways by the laser pulses at the two applied wavelengths. This, in combination with electron microscopy analysis, reveals that, depending on the irradiation wavelength, the size of the nanoparticles in the final nanocomposites differs. This difference is attributed to distinct mechanistic pathways that lead to the synthesis of small nanoparticles (from 1.5 to 4.5 nm) at λ=355 nm, whereas bigger ones (from 5 to 16 nm) are formed at λ=532 nm. At the same time, structural studies with both X-ray and electron diffraction measurements demonstrate the crystallinity of SnO2 nanoparticles in both cases, whereas XPS analysis confirms the light-induced oxidation of tin acetate into SnO2 . Taken all together, it is demonstrated that the pulsed laser irradiation at λ=355 and 532 nm leads to the formation of SnO2 nanoparticles with defined features highly dispersed in PMMA solid matrices.

作者:Gianvito, Caputo;Alice, Scarpellini;Francisco, Palazon;Athanassia, Athanassiou;Despina, Fragouli

来源:Chemphyschem : a European journal of chemical physics and physical chemistry 2017 年 18卷 12期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:33
作者:
Gianvito, Caputo;Alice, Scarpellini;Francisco, Palazon;Athanassia, Athanassiou;Despina, Fragouli
来源:
Chemphyschem : a European journal of chemical physics and physical chemistry 2017 年 18卷 12期
标签:
materials science nanoparticles photochemistry polymers thin films
The localized in situ formation of tin dioxide (SnO2 ) nanoparticles embedded in poly(methyl methacrylate) (PMMA) films is presented. This is achieved by the photoinduced conversion of the tin acetate precursor included in polymeric films, through controlled UV or visible pulsed laser irradiation at λ=355 and 532 nm, respectively. The evolution of the formation of nanoparticles is followed by UV/Vis spectroscopy and shows that their growth is affected in different ways by the laser pulses at the two applied wavelengths. This, in combination with electron microscopy analysis, reveals that, depending on the irradiation wavelength, the size of the nanoparticles in the final nanocomposites differs. This difference is attributed to distinct mechanistic pathways that lead to the synthesis of small nanoparticles (from 1.5 to 4.5 nm) at λ=355 nm, whereas bigger ones (from 5 to 16 nm) are formed at λ=532 nm. At the same time, structural studies with both X-ray and electron diffraction measurements demonstrate the crystallinity of SnO2 nanoparticles in both cases, whereas XPS analysis confirms the light-induced oxidation of tin acetate into SnO2 . Taken all together, it is demonstrated that the pulsed laser irradiation at λ=355 and 532 nm leads to the formation of SnO2 nanoparticles with defined features highly dispersed in PMMA solid matrices.