您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览34

Acute radiation-induced liver injury is a limitation for hepatoma radiotherapy. Come so far the clinical treatments are insufficient. The effective, specific, low toxicity and novel drugs are in powerful need. Glibenclamide is a common hypoglycemic. Some studies have revealed its relation with intracellular reactive oxygen species, the crucial mediator to radiation injury. This study is aimed to investigate if glibenclamide could act on the acute radiation-induced liver injury.Glibenclamide mitigated acute radiation-induced liver injury of mice, indicating as regression of hepatocellular edema, reduction of hepatic sinusoid, decline in serum ALP level and reduction of hepatocellular apoptosis. Pretreatment of glibenclamide reduced the radiosensitivity of NCTC-1469 cells. In mechanism, glibenclamide elevated cells membrane potential to up-regulate intracellular reactive oxygen species. The increased reactive oxygen species subsequently activated Akt-NF-κB pathway to promote survival of irradiated cells.BALB/C male mice were intraperitoneal injected with glibenclamide 1 hour before hepatic irradiation. At designed time points the livers were taken to make histological study and bloods were collected to measure serum transaminase. With/without glibenclamide pretreatment the irradiated NCTC-1469 cells were tested apoptosis, viability and proliferation. By western blotting the involved molecules were detected.Glibenclamide, prevents acute radiation-induced liver injury of mice via up-regulating intracellular reactive oxygen species and subsequently activating Akt-NF-κB pathway.

作者:Hu, Liu;Shichao, Wang;Zhao, Wu;Ziyun, Huang;Wei You, Chen;Yanyong, Yang;Jianguo, Cui;Cong, Liu;Hainan, Zhao;Jiaming, Guo;Pei, Zhang;Fu, Gao;Bailong, Li;Jianming, Cai

来源:Oncotarget 2017 年 8卷 25期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:34
作者:
Hu, Liu;Shichao, Wang;Zhao, Wu;Ziyun, Huang;Wei You, Chen;Yanyong, Yang;Jianguo, Cui;Cong, Liu;Hainan, Zhao;Jiaming, Guo;Pei, Zhang;Fu, Gao;Bailong, Li;Jianming, Cai
来源:
Oncotarget 2017 年 8卷 25期
标签:
ATP-sensitive potassium channel (KATP) acute radiation-induced liver injury glibenclamide membrane potential (MP) reactive oxygen species (ROS)
Acute radiation-induced liver injury is a limitation for hepatoma radiotherapy. Come so far the clinical treatments are insufficient. The effective, specific, low toxicity and novel drugs are in powerful need. Glibenclamide is a common hypoglycemic. Some studies have revealed its relation with intracellular reactive oxygen species, the crucial mediator to radiation injury. This study is aimed to investigate if glibenclamide could act on the acute radiation-induced liver injury.Glibenclamide mitigated acute radiation-induced liver injury of mice, indicating as regression of hepatocellular edema, reduction of hepatic sinusoid, decline in serum ALP level and reduction of hepatocellular apoptosis. Pretreatment of glibenclamide reduced the radiosensitivity of NCTC-1469 cells. In mechanism, glibenclamide elevated cells membrane potential to up-regulate intracellular reactive oxygen species. The increased reactive oxygen species subsequently activated Akt-NF-κB pathway to promote survival of irradiated cells.BALB/C male mice were intraperitoneal injected with glibenclamide 1 hour before hepatic irradiation. At designed time points the livers were taken to make histological study and bloods were collected to measure serum transaminase. With/without glibenclamide pretreatment the irradiated NCTC-1469 cells were tested apoptosis, viability and proliferation. By western blotting the involved molecules were detected.Glibenclamide, prevents acute radiation-induced liver injury of mice via up-regulating intracellular reactive oxygen species and subsequently activating Akt-NF-κB pathway.