您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览49

Hepatic ischemia-reperfusion injury (HIRI) is a major cause of hepatic failure and death after liver trauma, haemorrhagic shock, resection surgery and liver transplantation. AMP-activated protein kinase (AMPK) is an energy sensitive kinase that plays crucial roles in the regulation of metabolic homeostasis. In HIRI, ischemia induces the decline of ATP and the increased ratio of AMP/ATP, which promotes the phosphorylation and activation of AMPK. Three AMPK kinases, liver kinase B1 (LKB1), Ca2+/calmodulin-depedent protein kinase kinase β (CaMKKβ) and TGF-β-activated kinase-1 (TAK1), are main upstream kinases for the phosphorylation of AMPK. In addition to the changed AMP/ATP ratio, the activated CaMKKβ by increased intracelluar Ca2+ and the overproduction of reactive oxygen species (ROS) are also involved in the activation of AMPK during HIRI. The activated AMPK might provide protective benefits in HIRI via prevention of energy decline, inhibition of inflammatory response, suppression of hepatocyte apoptosis and attenuation of oxidative stress. Thus, AMPK might become a novel target for the pharmacological intervention of HIRI.

作者:Min, Zhang;Dan, Yang;Xianqiong, Gong;Pu, Ge;Jie, Dai;Ling, Lin;Li, Zhang

来源:American journal of translational research 2017 年 9卷 3期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:49
作者:
Min, Zhang;Dan, Yang;Xianqiong, Gong;Pu, Ge;Jie, Dai;Ling, Lin;Li, Zhang
来源:
American journal of translational research 2017 年 9卷 3期
标签:
AMP-activated protein kinase apoptosis hepatic ischemia-reperfusion injury inflammation oxidative stress
Hepatic ischemia-reperfusion injury (HIRI) is a major cause of hepatic failure and death after liver trauma, haemorrhagic shock, resection surgery and liver transplantation. AMP-activated protein kinase (AMPK) is an energy sensitive kinase that plays crucial roles in the regulation of metabolic homeostasis. In HIRI, ischemia induces the decline of ATP and the increased ratio of AMP/ATP, which promotes the phosphorylation and activation of AMPK. Three AMPK kinases, liver kinase B1 (LKB1), Ca2+/calmodulin-depedent protein kinase kinase β (CaMKKβ) and TGF-β-activated kinase-1 (TAK1), are main upstream kinases for the phosphorylation of AMPK. In addition to the changed AMP/ATP ratio, the activated CaMKKβ by increased intracelluar Ca2+ and the overproduction of reactive oxygen species (ROS) are also involved in the activation of AMPK during HIRI. The activated AMPK might provide protective benefits in HIRI via prevention of energy decline, inhibition of inflammatory response, suppression of hepatocyte apoptosis and attenuation of oxidative stress. Thus, AMPK might become a novel target for the pharmacological intervention of HIRI.