您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览54

Botryllus schlosseri is a cosmopolitan colonial ascidian that undergoes cyclical generation changes, or take-overs, during which adult zooids are resorbed and replaced by their buds. At take-over, adult tissues undergo diffuse apoptosis and effete cells are massively ingested by circulating phagocytes, with a consequent increase in oxygen consumption and in production of reactive oxygen species (ROS). The latter are responsible for the death of phagocytes involved in the clearance of apoptotic cells and corpses by phagocytosis-induced apoptosis. However, the majority of phagocytes and hemocytes do not die, even if they experience oxidative stress. This fact suggests the presence of detoxification mechanisms assuring their protection. To test this assumption, we searched for transcripts of genes involved in detoxification in the transcriptome of B. schlosseri. We identified and characterized transcripts for Cu/Zn superoxide dismutase (SOD), γ-glutamyl-cysteine ligase modulatory subunit (GCLM), glutathione synthase (GS), and two glutathione peroxidases (i.e., GPx3 and GPx5), all involved in protection from ROS. We also carried out a phylogenetic analysis of the putative amino acid sequences, confirming their similarity to their vertebrate counterparts, and studied the location of their mRNAs by in situ hybridization on hemocyte monolayers. We also analyzed gene transcription during the colonial blastogenetic cycle, which is the interval of time between one take-over and the next, by qRT-PCR. In addition, we investigated the effects of cadmium (Cd), an inducer of oxidative stress, on gene transcription. Our results indicated that i) antioxidant gene expression is modulated in the course of the blastogenetic cycle and upon exposure to Cd, and ii) hemocytes synthesize both enzymatic and nonenzymatic antioxidants, in line with the idea that they represent a major detoxification system for ascidians.

作者:Nicola, Franchi;Francesca, Ballin;Loriano, Ballarin

来源:The Biological bulletin 2017 年 232卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:54
作者:
Nicola, Franchi;Francesca, Ballin;Loriano, Ballarin
来源:
The Biological bulletin 2017 年 232卷 1期
标签:
AG, adenine guanine (splicing consensus signal) ATG, start signal CDS, coding sequences Cd, cadmium Cu/Zn SOD, Cu-Zn superoxide dismutase EST, expressed sequence tag FSW, filtered seawater GCL, γ-glutamyl-cysteine ligase GCLC, catalytic subunit of γ-glutamyl-cysteine ligase GCLM, modulatory subunit of γ-glutamyl-cysteine ligase GPx, glutathione peroxidase GS, glutathione synthase GSH, glutathione GSSG, oxidized glutathione GT, guanine timine (splicing consensus signal) ISH, in situ hybridization MC, mid-cycle ME, minimum evolution ML, maximum likelihood MP, maximum parsimony NADPH, nicotinamide adenine dinucleotide phosphate NJ, neighbor-joining PBS, phosphate-buffered saline PCR, polymerase chain reaction PO, phenoloxidase RACE, rapid amplification of the cDNA ends ROS: reactive oxygen species SEC, selenocysteine SECIS, selenocysteine insertion sequence SOD, superoxide dismutase SODb, type B SOD TAG, stop codon TGA, thymine, guanine, and adenine nucleotides (stop codon) TO, take-over UPGMA, unweighted pair group with arithmetic mean UTR, untranslated region
Botryllus schlosseri is a cosmopolitan colonial ascidian that undergoes cyclical generation changes, or take-overs, during which adult zooids are resorbed and replaced by their buds. At take-over, adult tissues undergo diffuse apoptosis and effete cells are massively ingested by circulating phagocytes, with a consequent increase in oxygen consumption and in production of reactive oxygen species (ROS). The latter are responsible for the death of phagocytes involved in the clearance of apoptotic cells and corpses by phagocytosis-induced apoptosis. However, the majority of phagocytes and hemocytes do not die, even if they experience oxidative stress. This fact suggests the presence of detoxification mechanisms assuring their protection. To test this assumption, we searched for transcripts of genes involved in detoxification in the transcriptome of B. schlosseri. We identified and characterized transcripts for Cu/Zn superoxide dismutase (SOD), γ-glutamyl-cysteine ligase modulatory subunit (GCLM), glutathione synthase (GS), and two glutathione peroxidases (i.e., GPx3 and GPx5), all involved in protection from ROS. We also carried out a phylogenetic analysis of the putative amino acid sequences, confirming their similarity to their vertebrate counterparts, and studied the location of their mRNAs by in situ hybridization on hemocyte monolayers. We also analyzed gene transcription during the colonial blastogenetic cycle, which is the interval of time between one take-over and the next, by qRT-PCR. In addition, we investigated the effects of cadmium (Cd), an inducer of oxidative stress, on gene transcription. Our results indicated that i) antioxidant gene expression is modulated in the course of the blastogenetic cycle and upon exposure to Cd, and ii) hemocytes synthesize both enzymatic and nonenzymatic antioxidants, in line with the idea that they represent a major detoxification system for ascidians.