您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览26

Demographic bottlenecks erode genetic diversity and may increase endangered species' extinction risk via decreased fitness and adaptive potential. The genetic status of species is generally assessed using neutral markers, whose dynamic can differ from that of functional variation due to selection. The MHC is a multigene family described as the most important genetic component of the mammalian immune system, with broad implications in ecology and evolution. The genus Lynx includes four species differing immensely in demographic history and population size, which provides a suitable model to study the genetic consequences of demographic declines: the Iberian lynx being an extremely bottlenecked species and the three remaining ones representing common and widely distributed species. We compared variation in the most variable exon of the MHCI and MHCII-DRB loci among the four species of the Lynx genus.The Iberian lynx was characterised by lower number of MHC alleles than its sister species (the Eurasian lynx). However, it maintained most of the functional genetic variation at MHC loci present in the remaining and genetically healthier lynx species at all nucleotide, amino acid, and supertype levels.Species-wide functional genetic diversity can be maintained even in the face of severe population bottlenecks, which caused devastating whole genome genetic erosion. This could be the consequence of divergent alleles being retained across paralogous loci, an outcome that, in the face of frequent gene conversion, may have been favoured by balancing selection.

作者:Elena, Marmesat;Krzysztof, Schmidt;Alexander P, Saveljev;Ivan V, Seryodkin;José A, Godoy

来源:BMC evolutionary biology 2017 年 17卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:26
作者:
Elena, Marmesat;Krzysztof, Schmidt;Alexander P, Saveljev;Ivan V, Seryodkin;José A, Godoy
来源:
BMC evolutionary biology 2017 年 17卷 1期
标签:
Balancing selection Bottleneck Conservation genetics Drift Genetic functional diversity Iberian lynx Lynx Mhc Natural selection Recombination
Demographic bottlenecks erode genetic diversity and may increase endangered species' extinction risk via decreased fitness and adaptive potential. The genetic status of species is generally assessed using neutral markers, whose dynamic can differ from that of functional variation due to selection. The MHC is a multigene family described as the most important genetic component of the mammalian immune system, with broad implications in ecology and evolution. The genus Lynx includes four species differing immensely in demographic history and population size, which provides a suitable model to study the genetic consequences of demographic declines: the Iberian lynx being an extremely bottlenecked species and the three remaining ones representing common and widely distributed species. We compared variation in the most variable exon of the MHCI and MHCII-DRB loci among the four species of the Lynx genus.The Iberian lynx was characterised by lower number of MHC alleles than its sister species (the Eurasian lynx). However, it maintained most of the functional genetic variation at MHC loci present in the remaining and genetically healthier lynx species at all nucleotide, amino acid, and supertype levels.Species-wide functional genetic diversity can be maintained even in the face of severe population bottlenecks, which caused devastating whole genome genetic erosion. This could be the consequence of divergent alleles being retained across paralogous loci, an outcome that, in the face of frequent gene conversion, may have been favoured by balancing selection.