您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览35

Birdsong emerges when a set of highly interconnected brain areas manage to generate a complex output. This consists of precise respiratory rhythms as well as motor instructions to control the vocal organ configuration. In this way, during birdsong production, dedicated cortical areas interact with life-supporting ones in the brainstem, such as the respiratory nuclei. We discuss an integrative view of this interaction together with a widely accepted "top-down" representation of the song system. We also show that a description of this neural network in terms of dynamical systems allows to explore songbird production and processing by generating testable predictions.

作者:Ana, Amador;Santiago, Boari;Gabriel B, Mindlin

来源:Current opinion in systems biology 2017 年 3卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:35
作者:
Ana, Amador;Santiago, Boari;Gabriel B, Mindlin
来源:
Current opinion in systems biology 2017 年 3卷
标签:
Sensorimotor integration birdsong dynamical systems
Birdsong emerges when a set of highly interconnected brain areas manage to generate a complex output. This consists of precise respiratory rhythms as well as motor instructions to control the vocal organ configuration. In this way, during birdsong production, dedicated cortical areas interact with life-supporting ones in the brainstem, such as the respiratory nuclei. We discuss an integrative view of this interaction together with a widely accepted "top-down" representation of the song system. We also show that a description of this neural network in terms of dynamical systems allows to explore songbird production and processing by generating testable predictions.