您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览70

A major challenge in biophotonics is multimodal imaging to obtain both morphological and molecular information at depth. We demonstrate a hybrid approach integrating optical coherence tomography (OCT) with wavelength modulated spatially offset Raman spectroscopy (WM-SORS). With depth colocalization obtained from the OCT, we can penetrate 1.2-mm deep into strong scattering media (lard) to acquire up to a 14-fold enhancement of a Raman signal from a hidden target (polystyrene) with a spatial offset. Our approach is capable of detecting both Raman and OCT signals for pharmaceutical particles embedded in turbid media and revealing the white matter at depth within a 0.6-mm thick brain tissue layer. This depth resolved label-free multimodal approach is a powerful route to analyze complex biomedical samples.

作者:Mingzhou, Chen;Josep, Mas;Lindsey H, Forbes;Melissa R, Andrews;Kishan, Dholakia

来源:Journal of biophotonics 2017 年

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:70
作者:
Mingzhou, Chen;Josep, Mas;Lindsey H, Forbes;Melissa R, Andrews;Kishan, Dholakia
来源:
Journal of biophotonics 2017 年
标签:
Raman spectroscopy brain tissue optical coherence tomography turbid media
A major challenge in biophotonics is multimodal imaging to obtain both morphological and molecular information at depth. We demonstrate a hybrid approach integrating optical coherence tomography (OCT) with wavelength modulated spatially offset Raman spectroscopy (WM-SORS). With depth colocalization obtained from the OCT, we can penetrate 1.2-mm deep into strong scattering media (lard) to acquire up to a 14-fold enhancement of a Raman signal from a hidden target (polystyrene) with a spatial offset. Our approach is capable of detecting both Raman and OCT signals for pharmaceutical particles embedded in turbid media and revealing the white matter at depth within a 0.6-mm thick brain tissue layer. This depth resolved label-free multimodal approach is a powerful route to analyze complex biomedical samples.