您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览27

Thermal expansion is an important property of substances. Its theoretical prediction has been challenging, particularly in cases the volume decreases with temperature, i.e., thermal contraction or negative thermal expansion at high temperatures. In this paper, a new theory recently developed by the authors has been reviewed and further examined in the framework of fundamental thermodynamics and statistical mechanics. Its applications to cerium with colossal thermal expansion and Fe₃Pt with thermal contraction in certain temperature ranges are discussed. It is anticipated that this theory is not limited to volume only and can be used to predict a wide range of properties at finite temperatures.

作者:Zi-Kui, Liu;Shun-Li, Shang;Yi, Wang

来源:Materials (Basel, Switzerland) 2017 年 10卷 4期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:27
作者:
Zi-Kui, Liu;Shun-Li, Shang;Yi, Wang
来源:
Materials (Basel, Switzerland) 2017 年 10卷 4期
标签:
negative thermal expansion (NTE) statistical mechanics theory thermal contraction thermodynamics
Thermal expansion is an important property of substances. Its theoretical prediction has been challenging, particularly in cases the volume decreases with temperature, i.e., thermal contraction or negative thermal expansion at high temperatures. In this paper, a new theory recently developed by the authors has been reviewed and further examined in the framework of fundamental thermodynamics and statistical mechanics. Its applications to cerium with colossal thermal expansion and Fe₃Pt with thermal contraction in certain temperature ranges are discussed. It is anticipated that this theory is not limited to volume only and can be used to predict a wide range of properties at finite temperatures.