您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览57

In cancer cells the small compounds erastin and RSL3 promote a novel type of cell death called ferroptosis, which requires iron-dependent accumulation of lipid reactive oxygen species. Here we assessed the contribution of lipid peroxidation activity of lipoxygenases (LOXs) to ferroptosis in oncogenic Ras-expressing cancer cells. Several 12/15-LOX inhibitors prevented cell death induced by erastin and RSL3. Furthermore, siRNA-mediated silencing of ALOX15 significantly decreased both erastin- and RSL3-induced ferroptotic cell death, whereas exogenous overexpression of ALOX15 enhanced the effect of these compounds. Immunofluorescence analyses revealed that the ALOX15 protein consistently localizes to cell membrane during the course of ferroptosis. Importantly, treatments of cells with ALOX15-activating compounds accelerated cell death at low, but not high doses of erastin and RSL3. These observations suggest that tumor ferroptosis is promoted by LOX-catalyzed lipid hydroperoxide generation in cellular membranes. This article is protected by copyright. All rights reserved.

作者:Ryosuke, Shintoku;Yuta, Takigawa;Keiichi, Yamada;Chisato, Kubota;Yuhei, Yoshimoto;Toshiyuki, Takeuchi;Ichiro, Koshiishi;Seiji, Torii

来源:Cancer science 2017 年

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:57
作者:
Ryosuke, Shintoku;Yuta, Takigawa;Keiichi, Yamada;Chisato, Kubota;Yuhei, Yoshimoto;Toshiyuki, Takeuchi;Ichiro, Koshiishi;Seiji, Torii
来源:
Cancer science 2017 年
标签:
Cell death Glutathione peroxidase Iron Ras Reactive oxygen species
In cancer cells the small compounds erastin and RSL3 promote a novel type of cell death called ferroptosis, which requires iron-dependent accumulation of lipid reactive oxygen species. Here we assessed the contribution of lipid peroxidation activity of lipoxygenases (LOXs) to ferroptosis in oncogenic Ras-expressing cancer cells. Several 12/15-LOX inhibitors prevented cell death induced by erastin and RSL3. Furthermore, siRNA-mediated silencing of ALOX15 significantly decreased both erastin- and RSL3-induced ferroptotic cell death, whereas exogenous overexpression of ALOX15 enhanced the effect of these compounds. Immunofluorescence analyses revealed that the ALOX15 protein consistently localizes to cell membrane during the course of ferroptosis. Importantly, treatments of cells with ALOX15-activating compounds accelerated cell death at low, but not high doses of erastin and RSL3. These observations suggest that tumor ferroptosis is promoted by LOX-catalyzed lipid hydroperoxide generation in cellular membranes. This article is protected by copyright. All rights reserved.