您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览442 | 下载159

Rotator cuff injury, considered as a resource of pain, disability and dyssomnia to serious decline in the quality of life, is a common disorder of the shoulder joint. Basic principles of rotator cuff repair aim at achieving high initial ifxation strength, maintaining mechanical stability and restoring the anatomic healing of the cuff tendon. After the routine surgical procedure for rotator cuff repair, the biology and histology of the normal enthesis are not restored. Tendon-to-bone healing occurs with a ifbrovascular scar tissue interface that is mechanically inferior to the native insertion site, which may lead to high re-rupture rate. For these reasons, new approaches are required to improve structural healing. Tissue engineering strategies have been suggested to improve the biological environment around the bone-tendon interface and to promote regeneration of the native insertion site. Although experimental applications of growth factors and scaffolds on animal models demonstrate promising results, tech

作者:赵晨;王蕾

来源:中国骨与关节杂志 2015 年 11期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:442 | 下载:159
作者:
赵晨;王蕾
来源:
中国骨与关节杂志 2015 年 11期
标签:
组织工程 干细胞 胞间信号肽类和蛋白质类 肩关节 腱损伤 创伤和损伤 Tissue engineering Stem cells Intercellular signaling peptides and proteins Shoulder joint Tendon Wounds and injuries
Rotator cuff injury, considered as a resource of pain, disability and dyssomnia to serious decline in the quality of life, is a common disorder of the shoulder joint. Basic principles of rotator cuff repair aim at achieving high initial ifxation strength, maintaining mechanical stability and restoring the anatomic healing of the cuff tendon. After the routine surgical procedure for rotator cuff repair, the biology and histology of the normal enthesis are not restored. Tendon-to-bone healing occurs with a ifbrovascular scar tissue interface that is mechanically inferior to the native insertion site, which may lead to high re-rupture rate. For these reasons, new approaches are required to improve structural healing. Tissue engineering strategies have been suggested to improve the biological environment around the bone-tendon interface and to promote regeneration of the native insertion site. Although experimental applications of growth factors and scaffolds on animal models demonstrate promising results, tech