您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览11

It is clear that COX-2 plays an important role in tumor and endothelial cell biology. Increased expression of COX-2 occurs in multiple cells within the tumor microenvironment that can impact on angiogenesis. COX-2 appears to: (a) play a key role in the release and activity of proangiogenic proteins; (b) result in the production of eicosanoid products TXA2, PGI2, PGE2 that directly stimulate endothelial cell migration and angiogenesis in vivo, and (c) result in enhanced tumor cell, and possibly, vascular endothelial cell survival by upregulation of the antiapoptotic proteins Bcl-2 and/or activation of PI3K-Akt. Selective pharmacologic inhibition of COX-2 represents a viable therapeutic option for the treatment of malignancies. Agents that selectively inhibit COX-2 appear to be safe, and well tolerated suggesting that chronic treatment for angiogenesis inhibition is feasible [107-110]. Because these agents inhibit angiogenesis, they should have at least additive benefit in combination with standard chemotherapy [111] and radiation therapy [24, 112]. In preclinical models, a selective inhibitor of COX-2 was shown to potentiate the beneficial antitumor effects of ionizing radiation with no increase in normal tissue cytotoxicity [113-115]. More recently, metronomic dosing regimens of standard chemotherapeutic agents without extended rest periods were shown to target the microvasculature in experimental animal models and result in significant antitumor activity [116-118]. This antiangiogenic chemotherapy regimen could be enhanced by the concurrent administration of an angiogenesis inhibitor [116-119]. Trials that will evaluate continuous low dose cyclophosphamide in combination with celecoxib are underway in patients with metastatic renal cancer, and non-Hodgkin's lymphoma [120]. Given the safety and tolerability of the selective COX-2 inhibitors, and the potent antiangiogenic properties of these agents, the combination of antiangiogenic chemotherapy with a COX-2 inhibitor warrants clinical evaluation [118, 121, 122]. The effects of selective COX-2 inhibitors on angiogenesis may also be due, in part, to COX-independent mechanisms [123-125]. Several reports have confirmed COX-independent effects of celecoxib, at relatively high concentrations (50 microM), where apoptosis is stimulated in cells that lack both COX-1 and COX-2 [126]. More recently, Song et al. [127] described structural modifications to celecoxib that revealed no association between the COX-2 inhibitory and proapoptotic activities of celecoxib [125]. Some of the COX-independent mechanisms for NSAIDs and selective COX-2 inhibitors include activation of protein kinase G, inhibition of NF-kappa B activation, downregulation of the antiapoptotic protein Bcl-XL, inhibition of PPAR delta, and activation of PPAR gamma. One or more of these COX-independent effects could contribute to the antiangiogenic properties of NSAIDs and selective COX-2 inhibitors. In order to take advantage of both the COX-dependent and COX-independent benefits of NSAIDs and selective COX-2 inhibitors, will require evaluation of these agents in neoplastic disease settings, using cancer-specific biomarkers. In conclusion, the contribution of COX-2 at multiple points in the angiogenic cascade makes it an ideal target for pharmacologic inhibition. The reported success of selective COX-2 inhibitors in cancer prevention could be related to angiogenesis inhibition [109]. As premalignant lesions progress towards malignancy, there is a switch to the angiogenic phenotype that is subsequently followed by rapid tumor growth [128, 129]. Intervention with angiogenesis inhibitors at this early stage of carcinogenesis has been shown to attenuate tumor growth in transgenic mouse models [130, 131]. The continued dependence on angiogenesis for later stages of tumorigenesis suggests that COX-2 inhibitors also will have clinical utility in the management of advanced cancers.

作者:Stephen, Gately;Robert, Kerbel

来源:Progress in experimental tumor research 2003 年 37卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:11
作者:
Stephen, Gately;Robert, Kerbel
来源:
Progress in experimental tumor research 2003 年 37卷
It is clear that COX-2 plays an important role in tumor and endothelial cell biology. Increased expression of COX-2 occurs in multiple cells within the tumor microenvironment that can impact on angiogenesis. COX-2 appears to: (a) play a key role in the release and activity of proangiogenic proteins; (b) result in the production of eicosanoid products TXA2, PGI2, PGE2 that directly stimulate endothelial cell migration and angiogenesis in vivo, and (c) result in enhanced tumor cell, and possibly, vascular endothelial cell survival by upregulation of the antiapoptotic proteins Bcl-2 and/or activation of PI3K-Akt. Selective pharmacologic inhibition of COX-2 represents a viable therapeutic option for the treatment of malignancies. Agents that selectively inhibit COX-2 appear to be safe, and well tolerated suggesting that chronic treatment for angiogenesis inhibition is feasible [107-110]. Because these agents inhibit angiogenesis, they should have at least additive benefit in combination with standard chemotherapy [111] and radiation therapy [24, 112]. In preclinical models, a selective inhibitor of COX-2 was shown to potentiate the beneficial antitumor effects of ionizing radiation with no increase in normal tissue cytotoxicity [113-115]. More recently, metronomic dosing regimens of standard chemotherapeutic agents without extended rest periods were shown to target the microvasculature in experimental animal models and result in significant antitumor activity [116-118]. This antiangiogenic chemotherapy regimen could be enhanced by the concurrent administration of an angiogenesis inhibitor [116-119]. Trials that will evaluate continuous low dose cyclophosphamide in combination with celecoxib are underway in patients with metastatic renal cancer, and non-Hodgkin's lymphoma [120]. Given the safety and tolerability of the selective COX-2 inhibitors, and the potent antiangiogenic properties of these agents, the combination of antiangiogenic chemotherapy with a COX-2 inhibitor warrants clinical evaluation [118, 121, 122]. The effects of selective COX-2 inhibitors on angiogenesis may also be due, in part, to COX-independent mechanisms [123-125]. Several reports have confirmed COX-independent effects of celecoxib, at relatively high concentrations (50 microM), where apoptosis is stimulated in cells that lack both COX-1 and COX-2 [126]. More recently, Song et al. [127] described structural modifications to celecoxib that revealed no association between the COX-2 inhibitory and proapoptotic activities of celecoxib [125]. Some of the COX-independent mechanisms for NSAIDs and selective COX-2 inhibitors include activation of protein kinase G, inhibition of NF-kappa B activation, downregulation of the antiapoptotic protein Bcl-XL, inhibition of PPAR delta, and activation of PPAR gamma. One or more of these COX-independent effects could contribute to the antiangiogenic properties of NSAIDs and selective COX-2 inhibitors. In order to take advantage of both the COX-dependent and COX-independent benefits of NSAIDs and selective COX-2 inhibitors, will require evaluation of these agents in neoplastic disease settings, using cancer-specific biomarkers. In conclusion, the contribution of COX-2 at multiple points in the angiogenic cascade makes it an ideal target for pharmacologic inhibition. The reported success of selective COX-2 inhibitors in cancer prevention could be related to angiogenesis inhibition [109]. As premalignant lesions progress towards malignancy, there is a switch to the angiogenic phenotype that is subsequently followed by rapid tumor growth [128, 129]. Intervention with angiogenesis inhibitors at this early stage of carcinogenesis has been shown to attenuate tumor growth in transgenic mouse models [130, 131]. The continued dependence on angiogenesis for later stages of tumorigenesis suggests that COX-2 inhibitors also will have clinical utility in the management of advanced cancers.