您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

HIV-1 integrase (IN) catalyzes the integration of proviral DNA into the host genome, an essential step for viral replication. Inhibition of IN catalytic activity provides an attractive strategy for antiretroviral drug design. Currently two IN inhibitors, MK-0518 and GS-9137, are in advanced stages of human clinical trials. The IN inhibitors in clinical evaluation demonstrate excellent antiretroviral efficacy alone or in combination regimens as compared to previously used clinical antiretroviral agents in naive and treatment-experienced HIV-1 infected patients. However, the emergence of viral strains resistant to clinically studied IN inhibitors and the dynamic nature of the HIV-1 genome demand a continued effort toward the discovery of novel inhibitors to keep a therapeutic advantage over the virus. Continued efforts in the field have resulted in the discovery of compounds from diverse chemical classes. In this review, we provide a comprehensive report of all IN inhibitors discovered in the years 2005 and 2006.

作者:Raveendra, Dayam;Rambabu, Gundla;Laith Q, Al-Mawsawi;Nouri, Neamati

来源:Medicinal research reviews 2008 年 28卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Raveendra, Dayam;Rambabu, Gundla;Laith Q, Al-Mawsawi;Nouri, Neamati
来源:
Medicinal research reviews 2008 年 28卷 1期
HIV-1 integrase (IN) catalyzes the integration of proviral DNA into the host genome, an essential step for viral replication. Inhibition of IN catalytic activity provides an attractive strategy for antiretroviral drug design. Currently two IN inhibitors, MK-0518 and GS-9137, are in advanced stages of human clinical trials. The IN inhibitors in clinical evaluation demonstrate excellent antiretroviral efficacy alone or in combination regimens as compared to previously used clinical antiretroviral agents in naive and treatment-experienced HIV-1 infected patients. However, the emergence of viral strains resistant to clinically studied IN inhibitors and the dynamic nature of the HIV-1 genome demand a continued effort toward the discovery of novel inhibitors to keep a therapeutic advantage over the virus. Continued efforts in the field have resulted in the discovery of compounds from diverse chemical classes. In this review, we provide a comprehensive report of all IN inhibitors discovered in the years 2005 and 2006.