您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览6

Unclear etiology in scoliotic and kyphotic deformities of the spine is responsible for uncertainty in treatment options. Normal all-day factors can be of importance. Newly developed or revisited clinical examination of sitting and supine children and consequent testing of neuro-muscular tightness shows to be useful in understanding the different spinal deformations and postural problems during growth and point to neuromuscular tension in growth. The goal is: -Better understanding of the role and individual characteristics of the central nervous system, especially the cord and roots in proper and improper growth of the human spine. -Clarifying that preservation of lordosis and good function at the thoracolumbar junction at the end of growth can be of value for normal configuration and function of the spine in adult life. -Present obvious important and consistent clinical observations in children in sitting and supine position with early and advanced adolescent deformities, by photographic studies and video fragments. Use of work on growth and deformation of the spine by Milan Roth on uncoupled neuro-osseous growth and other historical literature. -Relate these clinical findings and background literature with common knowledge about adolescent spinal deformities and mechanical laws on tensile and compressive forces in structures. Overview of relevant clinical tests in the growing child presented with deformities show possible correlation with the proposed internal balancing problem (uncoupled neuro-osseous growth) researched by Roth. Concomitant radiological and MRI signs are shown. Around 1900 most orthopaedic surgeons and anatomists saw relationship between the new habitude of children to sit for prolonged periods in schools and spinal deformities. A physiological explanation as adaptations needed by the total neuromuscular system ("the growing system") was widely postulated (Hueter-Volkmann principle) and subject in research but a concise theory was not achieved. By recognising positive effects of creating lordosis at the thoracolumbar junction of the spine and consistent clinical findings in early deformations scientific support was found by earlier experimental work of Roth. With a leading role of the central nervous system in growth of the spine of standing and sitting vertebrates by steering a tension based system, deformation can be understand as adaptations. Consequences for new preventive measures and therapeutic strategies in deformities seems possible.

作者:P J M, van Loon

来源:Studies in health technology and informatics 2008 年 140卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:6
作者:
P J M, van Loon
来源:
Studies in health technology and informatics 2008 年 140卷
Unclear etiology in scoliotic and kyphotic deformities of the spine is responsible for uncertainty in treatment options. Normal all-day factors can be of importance. Newly developed or revisited clinical examination of sitting and supine children and consequent testing of neuro-muscular tightness shows to be useful in understanding the different spinal deformations and postural problems during growth and point to neuromuscular tension in growth. The goal is: -Better understanding of the role and individual characteristics of the central nervous system, especially the cord and roots in proper and improper growth of the human spine. -Clarifying that preservation of lordosis and good function at the thoracolumbar junction at the end of growth can be of value for normal configuration and function of the spine in adult life. -Present obvious important and consistent clinical observations in children in sitting and supine position with early and advanced adolescent deformities, by photographic studies and video fragments. Use of work on growth and deformation of the spine by Milan Roth on uncoupled neuro-osseous growth and other historical literature. -Relate these clinical findings and background literature with common knowledge about adolescent spinal deformities and mechanical laws on tensile and compressive forces in structures. Overview of relevant clinical tests in the growing child presented with deformities show possible correlation with the proposed internal balancing problem (uncoupled neuro-osseous growth) researched by Roth. Concomitant radiological and MRI signs are shown. Around 1900 most orthopaedic surgeons and anatomists saw relationship between the new habitude of children to sit for prolonged periods in schools and spinal deformities. A physiological explanation as adaptations needed by the total neuromuscular system ("the growing system") was widely postulated (Hueter-Volkmann principle) and subject in research but a concise theory was not achieved. By recognising positive effects of creating lordosis at the thoracolumbar junction of the spine and consistent clinical findings in early deformations scientific support was found by earlier experimental work of Roth. With a leading role of the central nervous system in growth of the spine of standing and sitting vertebrates by steering a tension based system, deformation can be understand as adaptations. Consequences for new preventive measures and therapeutic strategies in deformities seems possible.