您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览42

This investigation utilized a single case design to evaluate the effects of a dynamic AFO on ambulation in post stroke hemiplegia. A single patient with stroke related hemiplegia using a dynamic AFO underwent gait analysis while walking on level ground. Outcome measures included temporal-spatial gait parameters and bilateral kinematic joint angles at the ankle, knee, and hip with and without AFO. Walking speed, stride length, step length and cadence increased with the dynamic AFO. Step width and double support decreased, while single support remained unchanged on the affected limb with the dynamic AFO. With the dynamic AFO there was increased hip flexion at foot strike and toe-off, increased hip sagittal plane angular velocity during swing, and decreased abduction. The dynamic AFO had a positive effect on the participant's overall gait which included improved temporal-spatial parameters and gait velocity which is likely due to a decrease in the overall energy cost of walking. Kinematic angles at the hip were most notably affected by brace utilization and this effect should be more fully explored. Further research with a larger sample utilizing dynamic AFOs is indicated to explore the generalizability of these findings and to determine the potential utility of these braces as an alternative to the traditionally prescribed solid AFO.

作者:Karen J, Nolan;Krupa K, Savalia;Mathew, Yarossi;Elie P, Elovic

来源:NeuroRehabilitation 2010 年 27卷 4期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:42
作者:
Karen J, Nolan;Krupa K, Savalia;Mathew, Yarossi;Elie P, Elovic
来源:
NeuroRehabilitation 2010 年 27卷 4期
This investigation utilized a single case design to evaluate the effects of a dynamic AFO on ambulation in post stroke hemiplegia. A single patient with stroke related hemiplegia using a dynamic AFO underwent gait analysis while walking on level ground. Outcome measures included temporal-spatial gait parameters and bilateral kinematic joint angles at the ankle, knee, and hip with and without AFO. Walking speed, stride length, step length and cadence increased with the dynamic AFO. Step width and double support decreased, while single support remained unchanged on the affected limb with the dynamic AFO. With the dynamic AFO there was increased hip flexion at foot strike and toe-off, increased hip sagittal plane angular velocity during swing, and decreased abduction. The dynamic AFO had a positive effect on the participant's overall gait which included improved temporal-spatial parameters and gait velocity which is likely due to a decrease in the overall energy cost of walking. Kinematic angles at the hip were most notably affected by brace utilization and this effect should be more fully explored. Further research with a larger sample utilizing dynamic AFOs is indicated to explore the generalizability of these findings and to determine the potential utility of these braces as an alternative to the traditionally prescribed solid AFO.