您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览52

Lipid peroxidation induced by free radicals has been implicated in the pathogenesis of various diseases. Numerous in vitro and animal studies show that oxidative modification of low density lipoprotein (LDL) is an important initial event of atherosclerosis. Vitamin E and other antioxidants inhibit low density lipoprotein oxidation efficiently in vitro, however, human clinical trials with vitamin E have not yielded positive results. The mixed results for vitamin E effect may be ascribed primarily to the two factors. Firstly low density lipoprotein oxidation proceeds by multiple pathways mediated not only by free radicals but also by other non-radical oxidants and vitamin E is effective only against free radical mediated oxidation. Secondly, in contrast to animal experiments, vitamin E is given at the latter stage where oxidation is no more important. Free radicals must play causal role in pathogenesis of atherosclerosis and vitamin E should be effective if given at right time to right subjects.

作者:Etsuo, Niki

来源:Journal of clinical biochemistry and nutrition 2011 年 48卷 1期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:52
作者:
Etsuo, Niki
来源:
Journal of clinical biochemistry and nutrition 2011 年 48卷 1期
标签:
atherosclerosis biomarker free radical lipid peroxidation vitamin E
Lipid peroxidation induced by free radicals has been implicated in the pathogenesis of various diseases. Numerous in vitro and animal studies show that oxidative modification of low density lipoprotein (LDL) is an important initial event of atherosclerosis. Vitamin E and other antioxidants inhibit low density lipoprotein oxidation efficiently in vitro, however, human clinical trials with vitamin E have not yielded positive results. The mixed results for vitamin E effect may be ascribed primarily to the two factors. Firstly low density lipoprotein oxidation proceeds by multiple pathways mediated not only by free radicals but also by other non-radical oxidants and vitamin E is effective only against free radical mediated oxidation. Secondly, in contrast to animal experiments, vitamin E is given at the latter stage where oxidation is no more important. Free radicals must play causal role in pathogenesis of atherosclerosis and vitamin E should be effective if given at right time to right subjects.