您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览32

The aim of this study was to assess the influence of different object locations in different fields of view (FOVs) of two cone beam CT (CBCT) systems on trabecular bone microstructure measurements of a human mandible. A block of dry human mandible was scanned at five different locations (centre, left, right, anterior and posterior) using five different FOVs of two CBCT systems (NewTom™ 5G; QR Verona, Verona, Italy and Accuitomo 170; Morita, Kyoto, Japan). Image analysis software (CTAn software v. 1.1; SkyScan, Kontich, Belgium) was used to assess the trabecular bone microstructural parameters (thickness, Tb.Th; spacing, Tb.Sp; number, Tb.N; bone volume density, BV/TV). All measurements were taken twice by one trained observer. Tb.Th, Tb.Sp and Tb.N varied significantly across different FOVs in the NewTom 5G (p < 0.001) and the Accuitomo 170 (p < 0.001). For location, a significant difference was observed only when measuring BV/TV (p = 0.03) using the NewTom 5G. The trabecular bone microstructural measurements obtained from CBCT systems are influenced by the size of FOVs. Not all trabecular bone parameters measured using different CBCT systems are affected when varying the object location within the FOVs.

作者:N, Ibrahim;A, Parsa;B, Hassan;P, van der Stelt;I H A, Aartman;P, Nambiar

来源:Dento maxillo facial radiology 2014 年 43卷 2期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:32
作者:
N, Ibrahim;A, Parsa;B, Hassan;P, van der Stelt;I H A, Aartman;P, Nambiar
来源:
Dento maxillo facial radiology 2014 年 43卷 2期
标签:
cone beam CT diagnostic imaging mandible trabecular bone
The aim of this study was to assess the influence of different object locations in different fields of view (FOVs) of two cone beam CT (CBCT) systems on trabecular bone microstructure measurements of a human mandible. A block of dry human mandible was scanned at five different locations (centre, left, right, anterior and posterior) using five different FOVs of two CBCT systems (NewTom™ 5G; QR Verona, Verona, Italy and Accuitomo 170; Morita, Kyoto, Japan). Image analysis software (CTAn software v. 1.1; SkyScan, Kontich, Belgium) was used to assess the trabecular bone microstructural parameters (thickness, Tb.Th; spacing, Tb.Sp; number, Tb.N; bone volume density, BV/TV). All measurements were taken twice by one trained observer. Tb.Th, Tb.Sp and Tb.N varied significantly across different FOVs in the NewTom 5G (p < 0.001) and the Accuitomo 170 (p < 0.001). For location, a significant difference was observed only when measuring BV/TV (p = 0.03) using the NewTom 5G. The trabecular bone microstructural measurements obtained from CBCT systems are influenced by the size of FOVs. Not all trabecular bone parameters measured using different CBCT systems are affected when varying the object location within the FOVs.