您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览28

Surface modification or decoration of ultrathin MoS2 films with chemical moieties is appealing since nanointerfacing can functionalize MoS2 films with bonus potentials. In this work, a facile and effective method for microlandscaping of Au nanoparticles (NPs) on few-layer MoS2 films is developed. This approach first employs a focused laser beam to premodify the MoS2 films to achieve active surface domains with unbound sulfur. When the activated surface is subsequently immersed in AuCl3 solution, Au NPs are found to preferentially decorate onto the modified regions. As a result, Au NPs can be selectively and locally anchored onto designated regions on the MoS2 surface. With a scanning laser beam, microlandscapes comprising of Au NPs decorated on laser-defined micropatterns are constructed. By varying the laser power, reaction time and thickness of the MoS2 films, the size and density of the NPs can be controlled. The resulting hybrid materials are demonstrated as efficient Raman active surfaces for the detection of aromatic molecules with high sensitivity.

作者:Junpeng, Lu;Jia Hui, Lu;Hongwei, Liu;Bo, Liu;Lili, Gong;Eng Soon, Tok;Kian Ping, Loh;Chorng Haur, Sow

来源:Small (Weinheim an der Bergstrasse, Germany) 2015 年 11卷 15期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:28
作者:
Junpeng, Lu;Jia Hui, Lu;Hongwei, Liu;Bo, Liu;Lili, Gong;Eng Soon, Tok;Kian Ping, Loh;Chorng Haur, Sow
来源:
Small (Weinheim an der Bergstrasse, Germany) 2015 年 11卷 15期
标签:
2D materials Au nanoparticles molecule detection surface-enhanced Raman transition metal dichalcogenides
Surface modification or decoration of ultrathin MoS2 films with chemical moieties is appealing since nanointerfacing can functionalize MoS2 films with bonus potentials. In this work, a facile and effective method for microlandscaping of Au nanoparticles (NPs) on few-layer MoS2 films is developed. This approach first employs a focused laser beam to premodify the MoS2 films to achieve active surface domains with unbound sulfur. When the activated surface is subsequently immersed in AuCl3 solution, Au NPs are found to preferentially decorate onto the modified regions. As a result, Au NPs can be selectively and locally anchored onto designated regions on the MoS2 surface. With a scanning laser beam, microlandscapes comprising of Au NPs decorated on laser-defined micropatterns are constructed. By varying the laser power, reaction time and thickness of the MoS2 films, the size and density of the NPs can be controlled. The resulting hybrid materials are demonstrated as efficient Raman active surfaces for the detection of aromatic molecules with high sensitivity.