您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览41

We report a green synthetic approach to the synthesis of water dispersible Ce(3+)/Tb(3+)-doped SrF2 nanocrystals, carried out using environment friendly microwave irradiation with water as solvent. The nanocrystals display strong green emission due to energy transfer from Ce(3+) to Tb(3+) ions. This strong green emission from Tb(3+) ions is selectively quenched upon addition of Cu(2+) ions, thus making the nanocrystals a potential Cu(2+) ions sensing material. There is barely any interference by other metal ions on the detection of Cu(2+) ions and the detection limit is as low as 2 nM. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA) with the recovery of almost 90

作者:Shyam, Sarkar;Manjunath, Chatti;Venkata N K B, Adusumalli;Venkataramanan, Mahalingam

来源:ACS applied materials & interfaces 2015 年 7卷 46期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:41
作者:
Shyam, Sarkar;Manjunath, Chatti;Venkata N K B, Adusumalli;Venkataramanan, Mahalingam
来源:
ACS applied materials & interfaces 2015 年 7卷 46期
标签:
detection energy transfer lanthanides nanocrystals photoluminescence quenching
We report a green synthetic approach to the synthesis of water dispersible Ce(3+)/Tb(3+)-doped SrF2 nanocrystals, carried out using environment friendly microwave irradiation with water as solvent. The nanocrystals display strong green emission due to energy transfer from Ce(3+) to Tb(3+) ions. This strong green emission from Tb(3+) ions is selectively quenched upon addition of Cu(2+) ions, thus making the nanocrystals a potential Cu(2+) ions sensing material. There is barely any interference by other metal ions on the detection of Cu(2+) ions and the detection limit is as low as 2 nM. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA) with the recovery of almost 90