您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

Fifteen SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) genes were identified and characterized in Nicotiana tabacum L. cv. Qinyan95. The exon-intron structures of these genes were determined according to the coding sequences confirmed by RT-PCR and the genomic DNA sequences downloaded from the databases in Sol Genomics Network, and thirteen of them were found to carry the response element of miR156. To elucidate the origin of the validated NtabSPL genes, multiple alignments of the nucleotide sequences encompassing the open reading frames were conducted by using the orthologs in N. tabacum, Nicotiana sylvestris, Nicotiana tomentosiformis, and Nicotiana otophora. The results showed that six NtabSPL genes were derived from a progenitor of N. sylvestris, and nine NtabSPL genes were derived from a progenitor of N. tomentosiformis, further corroborating that N. tabacum came from the interspecific hybridization between the ancestors of N. sylvestris and N. tomentosiformis. In contrast to previous statements about highly repetitive sequences, the genome of N. tabacum mainly retained the paternal-derived SPL genes in diploidization process. Phylogenetic analyses based on the highly conserved SBP (SQUAMOSA PROMOTER BINDING PROTEIN) domains and the full-length amino acid sequences reveal that the SPL proteins of tobacco, tomato, and Arabidopsis can be categorized into eight groups. It is worth noting that N. tabacum contains seven NtabSPL6 genes originated from two parental genomes and NtabSPL6-2 possesses a GC-AG intron. In addition, transgenic tobacco plants harboring Arabidopsis Pri-miR156A were generated by Agrobacterium-mediated transformation method, and the constitutive expression of miR156 could obviously inhibit the activity of the NtabSPL genes containing its target site, suggesting the function of miR156 is conservative in tobacco and Arabidopsis.

作者:Yao-Yao, Han;Yan-Qin, Ma;Dian-Zhen, Li;Jing-Wen, Yao;Zi-Qin, Xu

来源:Development genes and evolution 2016 年 226卷 1期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Yao-Yao, Han;Yan-Qin, Ma;Dian-Zhen, Li;Jing-Wen, Yao;Zi-Qin, Xu
来源:
Development genes and evolution 2016 年 226卷 1期
标签:
AtPri-miR156A Diploidization Nicotiana tabacum Nicotiana tomentosiformis NtabSPL Paternal donor
Fifteen SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) genes were identified and characterized in Nicotiana tabacum L. cv. Qinyan95. The exon-intron structures of these genes were determined according to the coding sequences confirmed by RT-PCR and the genomic DNA sequences downloaded from the databases in Sol Genomics Network, and thirteen of them were found to carry the response element of miR156. To elucidate the origin of the validated NtabSPL genes, multiple alignments of the nucleotide sequences encompassing the open reading frames were conducted by using the orthologs in N. tabacum, Nicotiana sylvestris, Nicotiana tomentosiformis, and Nicotiana otophora. The results showed that six NtabSPL genes were derived from a progenitor of N. sylvestris, and nine NtabSPL genes were derived from a progenitor of N. tomentosiformis, further corroborating that N. tabacum came from the interspecific hybridization between the ancestors of N. sylvestris and N. tomentosiformis. In contrast to previous statements about highly repetitive sequences, the genome of N. tabacum mainly retained the paternal-derived SPL genes in diploidization process. Phylogenetic analyses based on the highly conserved SBP (SQUAMOSA PROMOTER BINDING PROTEIN) domains and the full-length amino acid sequences reveal that the SPL proteins of tobacco, tomato, and Arabidopsis can be categorized into eight groups. It is worth noting that N. tabacum contains seven NtabSPL6 genes originated from two parental genomes and NtabSPL6-2 possesses a GC-AG intron. In addition, transgenic tobacco plants harboring Arabidopsis Pri-miR156A were generated by Agrobacterium-mediated transformation method, and the constitutive expression of miR156 could obviously inhibit the activity of the NtabSPL genes containing its target site, suggesting the function of miR156 is conservative in tobacco and Arabidopsis.