您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览19

Elimination/mineralization of paracetamol (PCT) was investigated by catalytic oxidation under ultrasound, UV and both. The catalyst was synthesized by immobilization of nPt on TiO2 to benefit from the ability of Pt to facilitate charge transfer processes and to separate e(-)/h(+) pairs. It was found that increasing the Pt-loading enhanced the rate of sonochemical reactions, but retarded that of photolytic reactions, due to reduced UV absorption on the surface. Simultaneous application of sonolysis and photolysis was synergistic due to disaggregation of the particles and homogenization of the active species over the catalyst surface. The decay of PCT was highly dependent on the availability of OH, as the reactions were nearly terminated in the presence of a strong OH scavenger-2-propanol. However, a remarkable rate enhancement was observed in the presence of a suitable dose of I(-), which scavenges both OH and hvb(+). The result was explained by the production of excess radicals upon sonolysis of iodide solutions, and the reactivity of PCT with them. Finally, carbon mineralization was significantly hindered in the presence of both scavengers due to increased competition for OH and inefficient formation of hydroquinone arising from reduced availability of hvb(+).

作者:Asu, Ziylan-Yava?;Nilsun H, Ince

来源:Chemosphere 2016 年 162卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:19
作者:
Asu, Ziylan-Yava?;Nilsun H, Ince
来源:
Chemosphere 2016 年 162卷
标签:
Bubble collapse Metal loading PCT Platinum Scavenging Schottky barrier Sonophoto-
Elimination/mineralization of paracetamol (PCT) was investigated by catalytic oxidation under ultrasound, UV and both. The catalyst was synthesized by immobilization of nPt on TiO2 to benefit from the ability of Pt to facilitate charge transfer processes and to separate e(-)/h(+) pairs. It was found that increasing the Pt-loading enhanced the rate of sonochemical reactions, but retarded that of photolytic reactions, due to reduced UV absorption on the surface. Simultaneous application of sonolysis and photolysis was synergistic due to disaggregation of the particles and homogenization of the active species over the catalyst surface. The decay of PCT was highly dependent on the availability of OH, as the reactions were nearly terminated in the presence of a strong OH scavenger-2-propanol. However, a remarkable rate enhancement was observed in the presence of a suitable dose of I(-), which scavenges both OH and hvb(+). The result was explained by the production of excess radicals upon sonolysis of iodide solutions, and the reactivity of PCT with them. Finally, carbon mineralization was significantly hindered in the presence of both scavengers due to increased competition for OH and inefficient formation of hydroquinone arising from reduced availability of hvb(+).