您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览28

The properties of nanoparticles (NPs) are determined by their size and geometric structures. A reliable determination of NP dimension is critical for understanding their physical and chemical properties, but sizing ultrasmall particles on the order of nanometer (nm) scale in the solution is still challenging. Here, we report the size measurement of PtNP at nanometer resolution by in situ scanning electrochemical microscopy (SECM), performed with the electrochemical generation and removal of H2 bubble at a reasonably small distance between tip and substrate electrodes in 200 or 500 mM HClO4 solution. A series of different PtNPs or nanoclusters were electrodeposited and in situ measured in the solution, proving the concept of sizing ultrasmall particles using tip generation/substrate collection mode of SECM. This technique could be also used for investigations of other supported ultrasmall metal nanocluster systems.

作者:Wei, Ma;Keke, Hu;QianJin, Chen;Min, Zhou;Michael V, Mirkin;Allen J, Bard

来源:Nano letters 2017 年 17卷 7期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:28
作者:
Wei, Ma;Keke, Hu;QianJin, Chen;Min, Zhou;Michael V, Mirkin;Allen J, Bard
来源:
Nano letters 2017 年 17卷 7期
标签:
SECM electrochemical size measurement hydrogen bubble nanometer resolution platinum nanoparticles
The properties of nanoparticles (NPs) are determined by their size and geometric structures. A reliable determination of NP dimension is critical for understanding their physical and chemical properties, but sizing ultrasmall particles on the order of nanometer (nm) scale in the solution is still challenging. Here, we report the size measurement of PtNP at nanometer resolution by in situ scanning electrochemical microscopy (SECM), performed with the electrochemical generation and removal of H2 bubble at a reasonably small distance between tip and substrate electrodes in 200 or 500 mM HClO4 solution. A series of different PtNPs or nanoclusters were electrodeposited and in situ measured in the solution, proving the concept of sizing ultrasmall particles using tip generation/substrate collection mode of SECM. This technique could be also used for investigations of other supported ultrasmall metal nanocluster systems.