您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览65

This paper presents a straightforward plasma treatment modification of graphene with an enhanced piezoresistive effect for the realization of a high-performance pressure sensor. The changes in the graphene in terms of its morphology, structure, chemical composition, and electrical properties after the NH3/Ar plasma treatment were investigated in detail. Through a sufficient plasma treatment condition, our studies demonstrated that plasma-treated graphene sheet exhibits a significant increase in sensitivity by one order of magnitude compared to that of the unmodified graphene sheet. The plasma-doping introduced nitrogen (N) atoms inside the graphene structure and was found to play a significant role in enhancing the pressure sensing performance due to the tunneling behavior from the localized defects. The high sensitivity and good robustness demonstrated by the plasma-treated graphene sensor suggest a promising route for simple, low-cost, and ultrahigh resolution flexible sensors.

作者:M A S M, Haniff;S M, Hafiz;N M, Huang;S A, Rahman;K A A, Wahid;M I, Syono;I A, Azid

来源:ACS applied materials & interfaces 2017 年 9卷 17期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:65
作者:
M A S M, Haniff;S M, Hafiz;N M, Huang;S A, Rahman;K A A, Wahid;M I, Syono;I A, Azid
来源:
ACS applied materials & interfaces 2017 年 9卷 17期
标签:
doping graphene nitrogen plasma piezoresistive pressure sensor
This paper presents a straightforward plasma treatment modification of graphene with an enhanced piezoresistive effect for the realization of a high-performance pressure sensor. The changes in the graphene in terms of its morphology, structure, chemical composition, and electrical properties after the NH3/Ar plasma treatment were investigated in detail. Through a sufficient plasma treatment condition, our studies demonstrated that plasma-treated graphene sheet exhibits a significant increase in sensitivity by one order of magnitude compared to that of the unmodified graphene sheet. The plasma-doping introduced nitrogen (N) atoms inside the graphene structure and was found to play a significant role in enhancing the pressure sensing performance due to the tunneling behavior from the localized defects. The high sensitivity and good robustness demonstrated by the plasma-treated graphene sensor suggest a promising route for simple, low-cost, and ultrahigh resolution flexible sensors.