您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

The concentration gradient of K+ across the cell membrane of a neuron determines its resting potential and cell excitability. During neurotransmission, the efflux of K+ from the cell via various channels will not only decrease the intracellular K+ content but also elevate the extracellular K+ concentration. However, it is not clear to what extent this change could be. In this study, we developed a multiple-parallel-connected silicon nanowire field-effect transistor (SiNW-FET) modified with K+-specific DNA-aptamers (aptamer/SiNW-FET) for the real-time detection of the K+ efflux from cultured cortical neurons. The aptamer/SiNW-FET showed an association constant of (2.18 ± 0.44) × 106 M-1 against K+ and an either less or negligible response to other alkali metal ions. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulation induced an outward current and hyperpolarized the membrane potential in a whole-cell patched neuron under a Na+/K+-free buffer. When neurons were placed atop the aptamer/SiNW-FET in a Na+/K+-free buffer, AMPA (13 μM) stimulation elevated the extracellular K+ concentration to ∼800 nM, which is greatly reduced by 6,7-dinitroquinoxaline-2,3-dione, an AMPA receptor antagonist. The EC50 of AMPA in elevating the extracellular K+ concentration was 10.3 μM. By stimulating the neurons with AMPA under a normal physiological buffer, the K+ concentration in the isolated cytosolic fraction was decreased by 75

作者:Ankur, Anand;Chia-Rung, Liu;Ai-Chuan, Chou;Wan-Hsuan, Hsu;Rajesh Kumar, Ulaganathan;Yi-Cheng, Lin;Chi-An, Dai;Fan-Gang, Tseng;Chien-Yuan, Pan;Yit-Tsong, Chen

来源:ACS sensors 2017 年 2卷 1期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Ankur, Anand;Chia-Rung, Liu;Ai-Chuan, Chou;Wan-Hsuan, Hsu;Rajesh Kumar, Ulaganathan;Yi-Cheng, Lin;Chi-An, Dai;Fan-Gang, Tseng;Chien-Yuan, Pan;Yit-Tsong, Chen
来源:
ACS sensors 2017 年 2卷 1期
标签:
aptamer biosensor ion channel neuron potassium ion silicon nanowire field-effect transistor
The concentration gradient of K+ across the cell membrane of a neuron determines its resting potential and cell excitability. During neurotransmission, the efflux of K+ from the cell via various channels will not only decrease the intracellular K+ content but also elevate the extracellular K+ concentration. However, it is not clear to what extent this change could be. In this study, we developed a multiple-parallel-connected silicon nanowire field-effect transistor (SiNW-FET) modified with K+-specific DNA-aptamers (aptamer/SiNW-FET) for the real-time detection of the K+ efflux from cultured cortical neurons. The aptamer/SiNW-FET showed an association constant of (2.18 ± 0.44) × 106 M-1 against K+ and an either less or negligible response to other alkali metal ions. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulation induced an outward current and hyperpolarized the membrane potential in a whole-cell patched neuron under a Na+/K+-free buffer. When neurons were placed atop the aptamer/SiNW-FET in a Na+/K+-free buffer, AMPA (13 μM) stimulation elevated the extracellular K+ concentration to ∼800 nM, which is greatly reduced by 6,7-dinitroquinoxaline-2,3-dione, an AMPA receptor antagonist. The EC50 of AMPA in elevating the extracellular K+ concentration was 10.3 μM. By stimulating the neurons with AMPA under a normal physiological buffer, the K+ concentration in the isolated cytosolic fraction was decreased by 75