您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览120 | 下载60

随着细胞重编程技术的发展,如今我们可以通过转录因子来重编程转录组,从而使一种细胞类型转化为另一种细胞类型.值得注意的是,这种方法实现了将体细胞转化为诱导性多能干细胞(iPSCs),为获得患者特异性多功能干细胞提供了可能. Shinya Yamanaka及其研究小组于2006年首次发现了这项技术,最开始的iPSCs是由小鼠成纤维细胞在转录因子Oct4、Sox2、Klf4和c-Myc的作用下诱导去分化而形成.这项技术在医疗领域具有巨大的潜力,为研究和发展治疗眼部疾病方法开创了新纪元.本文将对患者特异性iPSCs在建造三维疾病模型以及各型视网膜疾病模型,细胞替代治疗及临床试验,药物高通量筛选试验及毒性检验方面的运用进行综述,并论述直接重编程技术的进展,以及利用iPSCs和细胞重编程技术进行眼科研究的未来方向.

作者:方绿洁

来源:中华实验眼科杂志 2018 年 36卷 11期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:120 | 下载:60
作者:
方绿洁
来源:
中华实验眼科杂志 2018 年 36卷 11期
标签:
诱导性多功能干细胞 细胞重编程 视网膜 疾病建模 细胞治疗 药物筛选 Induced pluripotent stem cells Cellular reprogramming Retina Disease modeling Cell therapy Drug screening
随着细胞重编程技术的发展,如今我们可以通过转录因子来重编程转录组,从而使一种细胞类型转化为另一种细胞类型.值得注意的是,这种方法实现了将体细胞转化为诱导性多能干细胞(iPSCs),为获得患者特异性多功能干细胞提供了可能. Shinya Yamanaka及其研究小组于2006年首次发现了这项技术,最开始的iPSCs是由小鼠成纤维细胞在转录因子Oct4、Sox2、Klf4和c-Myc的作用下诱导去分化而形成.这项技术在医疗领域具有巨大的潜力,为研究和发展治疗眼部疾病方法开创了新纪元.本文将对患者特异性iPSCs在建造三维疾病模型以及各型视网膜疾病模型,细胞替代治疗及临床试验,药物高通量筛选试验及毒性检验方面的运用进行综述,并论述直接重编程技术的进展,以及利用iPSCs和细胞重编程技术进行眼科研究的未来方向.