您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览33 | 下载1

OBJECTIVE To discover a small molecule targeting ULK1-modulated cell death of triple negative breast cancer and exploreits potential mechanisms. METHODS ULK1 expression was analyzed by The Cancer Genome Atlas (TCGA) analysis and tissue microarray (TMA) analysis. ULK1 agonist was designed by using in silico screening, as well as modified by chemical synthesis and screened by kinase and anti-proliferative activities. The amino acid residues that key to the activation site of LYN-1604 were determined by site-directed mutagenesis, as well as in vitro kinase assay and ADP-Glo kinase assay. The mechanisms of LYN-1604 induced cell death were investigated by fluores?cence microscope, western blotting, flow cytometry analysis, immunocytochemistry, as well as siRNA and GFP-mRFP-LC3 plasmid transfections. Potential ULK1 interactors were discovered by performing comparative microarray analysis and the therapeutic effect of LYN-1604 was assessed by xenograft breast cancer mouse model. RESULTS We found that ULK1 was

来源:中国药理学与毒理学杂志 2017 年 31卷 10期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:33 | 下载:1
来源:
中国药理学与毒理学杂志 2017 年 31卷 10期
标签:
UNC-51-like kinase 1 (ULK1) cell death autophagy ULK1 agonist triple negative breast cancer (TNBC)
OBJECTIVE To discover a small molecule targeting ULK1-modulated cell death of triple negative breast cancer and exploreits potential mechanisms. METHODS ULK1 expression was analyzed by The Cancer Genome Atlas (TCGA) analysis and tissue microarray (TMA) analysis. ULK1 agonist was designed by using in silico screening, as well as modified by chemical synthesis and screened by kinase and anti-proliferative activities. The amino acid residues that key to the activation site of LYN-1604 were determined by site-directed mutagenesis, as well as in vitro kinase assay and ADP-Glo kinase assay. The mechanisms of LYN-1604 induced cell death were investigated by fluores?cence microscope, western blotting, flow cytometry analysis, immunocytochemistry, as well as siRNA and GFP-mRFP-LC3 plasmid transfections. Potential ULK1 interactors were discovered by performing comparative microarray analysis and the therapeutic effect of LYN-1604 was assessed by xenograft breast cancer mouse model. RESULTS We found that ULK1 was