您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

Bacterial β-galactosidase is one of the most widely used reporter genes in experiments involving transgenic and knockout animals. In this review we discuss the current histochemical methods and available reagents to detect β-galactosidase activity. Different substrates are available, but the most commonly used is X-gal in combination with potassium ferri- and ferro-cyanide. The reaction produces a characteristic blue precipitate in the cells expressing β-galactosidase, and despite its efficiency in staining whole embryos, its detection on thin tissue sections is difficult. Salmon-gal is another substrate, which in combination with ferric and ferrous ions gives a reddish-pink precipitate. Its sensitivity for staining tissue sections is similar to that of X-gal. Combining X-gal or Salmon-gal with tetrazolium salts provides a faster and more sensitive reaction than traditional β-galactosidase histochemistry. Here, we compare the traditional β-galactosidase assay and the combination of X-gal or Salmon-gal with three tetrazolium salts: nitroblue tetrazolium, tetranitroblue tetrazolium and iodonitrotetrazolium. Based on an assessment of the sensitivity and specificity of the different combinations of substrates, we are proposing an optimized and enhanced method for β-galactosidase detection in histological sections of the transgenic mouse brain. Optimal staining was obtained with X-gal in combination with nitroblue tetrazolium, which provides a faster and more specific staining than the traditional X-gal combination with potassium ferri- and ferro-cyanide. We recommend the X-gal/nitroblue tetrazolium staining mixture as the first choice for the detection of β-galactosidase activity on histological sections. When faster results are needed, Salmon-gal/nitroblue tetrazolium should be considered as an alternative, while maintaining acceptable levels of noise.

作者:Stefan, Trifonov;Yuji, Yamashita;Masahiko, Kase;Masato, Maruyama;Tetsuo, Sugimoto

来源:Anatomical science international 2016 年 91卷 1期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Stefan, Trifonov;Yuji, Yamashita;Masahiko, Kase;Masato, Maruyama;Tetsuo, Sugimoto
来源:
Anatomical science international 2016 年 91卷 1期
标签:
Nitroblue tetrazolium Salmon-gal X-gal lacZ β-galactosidase
Bacterial β-galactosidase is one of the most widely used reporter genes in experiments involving transgenic and knockout animals. In this review we discuss the current histochemical methods and available reagents to detect β-galactosidase activity. Different substrates are available, but the most commonly used is X-gal in combination with potassium ferri- and ferro-cyanide. The reaction produces a characteristic blue precipitate in the cells expressing β-galactosidase, and despite its efficiency in staining whole embryos, its detection on thin tissue sections is difficult. Salmon-gal is another substrate, which in combination with ferric and ferrous ions gives a reddish-pink precipitate. Its sensitivity for staining tissue sections is similar to that of X-gal. Combining X-gal or Salmon-gal with tetrazolium salts provides a faster and more sensitive reaction than traditional β-galactosidase histochemistry. Here, we compare the traditional β-galactosidase assay and the combination of X-gal or Salmon-gal with three tetrazolium salts: nitroblue tetrazolium, tetranitroblue tetrazolium and iodonitrotetrazolium. Based on an assessment of the sensitivity and specificity of the different combinations of substrates, we are proposing an optimized and enhanced method for β-galactosidase detection in histological sections of the transgenic mouse brain. Optimal staining was obtained with X-gal in combination with nitroblue tetrazolium, which provides a faster and more specific staining than the traditional X-gal combination with potassium ferri- and ferro-cyanide. We recommend the X-gal/nitroblue tetrazolium staining mixture as the first choice for the detection of β-galactosidase activity on histological sections. When faster results are needed, Salmon-gal/nitroblue tetrazolium should be considered as an alternative, while maintaining acceptable levels of noise.